如圖,平面四邊形ABCD中,AB=13,AC=10, AD=5,.

(Ⅰ);
(Ⅱ)設(shè),求x、y的值。

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)求,而,令,則,只需求出即可,由已知,,由向量數(shù)量積可求得,從而可得,進(jìn)而可求出,從而得;(Ⅱ)若,則,結(jié)合,及(1)中結(jié)論,可求得的值.
試題解析:(Ⅰ)設(shè)
,
                     .3分
 
                      ..6分
(Ⅱ)由   .8分
                        ..10分
解得:.                  12分
考點(diǎn):平面向量數(shù)量及運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量m=(2cosx, cosx-sinx),n=(sin(x+),sinx),且滿足f(x)=m·n.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的內(nèi)角A滿足f(A)=2,a、b、c分別為角A、B、C所對(duì)的邊,且·,求邊BC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,-2),B(2,3),C(-2,-1).
(1)求以線段AB、AC為鄰邊的平行四邊形的兩條對(duì)角線的長;
(2)設(shè)實(shí)數(shù)t滿足(-t=0,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)系中,為原點(diǎn),射線軸正半軸重合,射線是第一象限角平分線.在上有點(diǎn)列,在上有點(diǎn)列,.已知,,

(1)求點(diǎn)的坐標(biāo);
(2)求的坐標(biāo);
(3)求面積的最大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,當(dāng)為何值時(shí),
(1)垂直?
(2)平行?平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn),曲線上的動(dòng)點(diǎn)滿足,定點(diǎn),由曲線外一點(diǎn)向曲線引切線,切點(diǎn)為,且滿足.

(1)求線段長的最小值;
(2)若以為圓心所作的圓與曲線有公共點(diǎn),試求半徑取最小值時(shí)圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知數(shù)列2,5,11,20,x,47, 合情推出x的值為(   )

A.29B.31 C.32D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

數(shù)列1,3,6,10,…的一個(gè)通項(xiàng)公式是(     )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,在AC上取點(diǎn)N,使得AN=AC,在AB上取點(diǎn)M,使得AM=AB,在BN的延長線上取點(diǎn)P,使得NP=BN,在CM的延長線上取一點(diǎn)Q,使MQ=λCM時(shí),=,試確定λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案