【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為為過(guò)焦點(diǎn)且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過(guò)點(diǎn).

1)求的值及該圓的方程;

2)設(shè)上任意一點(diǎn),過(guò)點(diǎn)的切線,切點(diǎn)為,證明:.

【答案】1,圓的方程為:.(2)答案見(jiàn)解析

【解析】

1)根據(jù)題意,可知點(diǎn)的坐標(biāo)為,即可求出的值,即可求出該圓的方程;

2)由題易知,直線的斜率存在且不為0,設(shè)的方程為,與拋物線聯(lián)立方程組,根據(jù),求得,化簡(jiǎn)解得,進(jìn)而求得點(diǎn)的坐標(biāo)為,分別求出,,利用向量的數(shù)量積為0,即可證出.

解:(1)易知點(diǎn)的坐標(biāo)為,

所以,解得.

又圓的圓心為,

所以圓的方程為.

2)證明易知,直線的斜率存在且不為0,

設(shè)的方程為,

代入的方程,得.

,得,

所以,解得.

代入的方程,得,即點(diǎn)的坐標(biāo)為.

所以,,

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若的極大值點(diǎn),求的取值范圍;

(2)當(dāng),時(shí),方程(其中)有唯一實(shí)數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為F,點(diǎn),過(guò)M的直線與橢圓E交于A,B兩點(diǎn),線段AB中點(diǎn)為C,設(shè)橢圓EA,B兩點(diǎn)處的切線相交于點(diǎn)P,O為坐標(biāo)原點(diǎn).

1)證明:O、C、P三點(diǎn)共線;

2)已知是拋物線的弦,所在直線過(guò)該拋物線的準(zhǔn)線與y軸的交點(diǎn),是弦在兩端點(diǎn)處的切線的交點(diǎn),小明同學(xué)猜想:在定直線上.你認(rèn)為小明猜想合理嗎?若合理,請(qǐng)寫(xiě)出所在直線方程;若不合理,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),若上有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,數(shù)列中的每一項(xiàng)均在集合中,且任意兩項(xiàng)不相等,又對(duì)于任意的整數(shù),均有.例如時(shí),數(shù)列

1)當(dāng)時(shí),試求滿足條件的數(shù)列的個(gè)數(shù);

2)當(dāng),求所有滿足條件的數(shù)列的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓居民了解垃圾分類(lèi),養(yǎng)成垃圾分類(lèi)的習(xí)慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類(lèi):可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類(lèi)由10位同學(xué)組成四個(gè)宣傳小組,其中可回收物與餐廚垃圾宣傳小組各有2位同學(xué),有害垃圾與其他垃圾宣傳小組各有3位同學(xué).現(xiàn)從這10位同學(xué)中選派5人到某小區(qū)進(jìn)行宣傳活動(dòng),則每個(gè)宣傳小組至少選派1人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,若存在常數(shù)M,使得對(duì)任意中至少有一個(gè)不小于M,則記作,那么下列命題正確的是( ).

A.,則數(shù)列各項(xiàng)均大于或等于M;

B.,則

C.,,則

D.,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于A,B的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案