【題目】已知 的夾角為120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

【答案】
(1)解: 的夾角為120°,且| |=4,| |=2,

=| || |cos120°=4×2×(﹣ )=﹣4,

﹣2 )( + )=| |2﹣2 + ﹣2| |2=16+4﹣2×4=12;


(2)解:|3 ﹣4 |2=9| |2﹣24 +16| |2=9×42﹣24×(﹣4)+16×22=16×19,

∴|3 ﹣4 |=4


【解析】先根據(jù)向量的數(shù)量積公式求出 =﹣4,再分別根據(jù)向量的數(shù)量積的運(yùn)算和模計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且該橢圓經(jīng)過點(diǎn)( , )和點(diǎn) .求
(1)橢圓C的方程;
(2)P,Q,M,N四點(diǎn)在橢圓C上,F(xiàn)1為負(fù)半軸上的焦點(diǎn),直線PQ,MN都過F1 ,求四邊形PMQN的面積最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a2=2,a2+a3=10,求通項(xiàng)公式an及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)),為自然對(duì)數(shù)的底數(shù),若曲線上存在點(diǎn),使得,則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程是 =1,F(xiàn)1 , F2是它的左、右焦點(diǎn),A,B為它的左、右頂點(diǎn),l是橢圓的右準(zhǔn)線,P是橢圓上一點(diǎn),PA、PB分別交準(zhǔn)線l于M,N兩點(diǎn).
(1)若P(0, ),求 的值;
(2)若P(x0 , y0)是橢圓上任意一點(diǎn),求 的值;
(3)能否將問題推廣到一般情況,即給定橢圓方程是 =1(a>b>0),P(x0 , y0)是橢圓上任意一點(diǎn),問 是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)證明:Cnm+Cnm1=Cn+1m;
(2)證明:Cn1+2Cn2+3Cn3+…+nCnn=n2n1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)現(xiàn)有5名男生和3名女生.若從中選5人,且要求女生只有2名,站成一排,共有多少種不同的排法?
(2)從{﹣3,﹣2,﹣1,0,1,2,3,4}中任選三個(gè)不同元素作為二次函數(shù)y=ax2+bx+c的系數(shù),問能組成多少條經(jīng)過原點(diǎn)且頂點(diǎn)在第一象限或第三象限的拋物線?
(3)已知( +2x)n , 若展開式中第5項(xiàng)、第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開式中二項(xiàng)式系數(shù)最大項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議.現(xiàn)對(duì)他前7次考試的數(shù)學(xué)成績x、物理成績y進(jìn)行分析.下面是該生7次考試的成績.

(I)他的數(shù)學(xué)成績與物理成績哪個(gè)更穩(wěn)定?請(qǐng)給出你的證明;

(II)已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的物理成績達(dá)到115分,請(qǐng)你估計(jì)他的數(shù)學(xué)成績大約是多少?并請(qǐng)你根據(jù)物理成績與數(shù)學(xué)成績的相關(guān)性,給出該生在學(xué)習(xí)數(shù)學(xué)、物理上的合理建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球.已知從袋中任意摸出1個(gè)球,得到黑球的概率是 ;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是 . (Ⅰ)若袋中共有10個(gè)球,
(i)求白球的個(gè)數(shù);
(ii)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于 .并指出袋中哪種顏色的球個(gè)數(shù)最少.

查看答案和解析>>

同步練習(xí)冊(cè)答案