過點P(-3,0)且傾斜角為30°的直線和曲線
x=t+
1
t
y=t-
1
t
(t為參數(shù))相交于A,B兩點.求線段AB的長.
分析:寫出直線的參數(shù)方程,代入曲線方程得到關(guān)于s 的一元二次方程,利用根與系數(shù)的關(guān)系,代入弦長公式求得 AB的長.
解答:解:直線的參數(shù)方程為 
x = -3 + 
3
2
s
y = 
1
2
s
   (s 為參數(shù)),曲線
x=t+
1
t
y=t-
1
t
 可以化為  x2-y2=4.
將直線的參數(shù)方程代入上式,得 s2-6
3
s+ 10 = 0

設(shè)A、B對應(yīng)的參數(shù)分別為 s1,s2,∴s1+  s2= 6 
3
,s1•s2=10.
∴AB=|s1-s2|=
(s1+s2)2-4s1s2
=2
17
點評:本題考查直線的參數(shù)方程,一元二次方程根與系數(shù)的關(guān)系,弦長公式的應(yīng)用,利用 AB=|s1-s2|=
(s1+s2)2-4s1s2
,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)過點P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點,求線段AB的長.
(2)若不等式|a-1|≥x+2y+2z,對滿足x2+y2+z2=1的一切實數(shù)x,y,z恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點P(3,0)且與圓x2+6x+y2-91=0相內(nèi)切的動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l過點P(3,0)且與兩條直線l1:2x-y-2=0,l2:x+y+3=0分別相交于兩點A、B,且點P平分線段AB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M=
3-2
2-2
α=
-1
4
,試計算:M10α
選修4-4 參數(shù)方程與極坐標(biāo)
過點P(-3,0)且傾斜角為30°直線和曲線
x=t+
1
t
y=t-
1
t
 (t為參數(shù))
相交于A、B兩點.求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案