10.已知角θ的終邊過點P(-12,5),則cosθ=( 。
A.$\frac{5}{13}$B.$-\frac{12}{13}$C.$\frac{12}{13}$D.$-\frac{5}{13}$

分析 利用任意角的三角函數(shù)的定義,求得cosθ的值.

解答 解:∵角θ的終邊過點P(-12,5),則r=|OP|=13,
∴cosθ=$\frac{x}{r}$=$\frac{-12}{13}$=-$\frac{12}{13}$,
故選:B.

點評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\sqrt{x},x>0}\\{(x-\frac{1}{x})^{4},x<0}\end{array}\right.$,則f(f(2))=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知拋物線C:y2=4x,P為C上一點且縱坐標為2,Q,R是C上的兩個動點,且PQ⊥PR.
(Ⅰ)求過點P,且與C恰有一個公共點的直線l的方程;
(Ⅱ)求證:QP過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果點P(sin2θ,2cosθ)位于第三象限,那么角θ所在的象限是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)已知y=sinx+cosx,x∈R,求y的范圍;
(2)已知y=sinx+cosx-sin2x,x∈R,求y的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$,P在邊BC上且BP=2PC,則$\overrightarrow{AP}$=( 。
A.$\frac{4}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$D.$\frac{1}{3}\overrightarrow a+\frac{4}{3}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.sin40°(tan190°-$\sqrt{3}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)有一條光線從P(-2,4$\sqrt{3}$)射出,并且經(jīng)x軸上一點Q(2,0)反射
(Ⅰ)求入射光線和反射光線所在的直線方程(分別記為l1,l2
(Ⅱ)設(shè)動直線l:x=my-2$\sqrt{3}$,當(dāng)點M(0,-6)到l的距離最大時,求l,l1,l2所圍成的三角形的內(nèi)切圓(即:圓心在三角形內(nèi),并且與三角形的三邊相切的圓)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC,O為AB的中點,OF⊥EC.
(Ⅰ)求證:OE⊥FC;
(Ⅱ)若AC=$\sqrt{3}$.AB=2時,求三棱錐O-CEF的體積.

查看答案和解析>>

同步練習(xí)冊答案