精英家教網(wǎng)如圖A、B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
兩個頂點,F(xiàn)1是左焦點,P為橢圓上一點,且PF1⊥OX,OP∥AB.
(1)求橢圓的離心率;
(2)若AB=3,求橢圓的方程.
分析:(1)橢圓的離心率,即求
c
a
,只需求a、c的值或a、c用同一個量表示.本題沒有具體數(shù)值,因此只需把a、c用同一量表示,由PF1⊥OX,OP∥AB.易得b=c,a=
2
c.
(2)首先求出AB=3,得出所以c=
3
,a=
6
,即可求出方程
解答:解:(1)PF1=
b2
a
,OF1=c,OA=b,OB=a,
因為PF1⊥OX,OP∥AB,所以
PF1
OF1
=
OA
OB
,可得:b=c,
所以a=
2
c
,故e=
2
2
;…(7分)
(2)AB=
3
c=3
,所以c=
3
,故a=
6
,
所以橢圓的標準方程為:
x2
6
+
y2
3
=1
.…(7分)
點評:本題主要考查了橢圓的性質(zhì).要充分理解橢圓性質(zhì)中的長軸、短軸、焦距、準線方程等概念及其關系.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,橢圓C:x2+3y2=3b2(b>0).
(1)求橢圓C的離心率;
(2)若b=1,A,B是橢圓C上兩點,且|AB|=
3
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A組:直角坐標系xoy中,已知中心在原點,離心率為
1
2
的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.
(1)求橢圓E的方程;
(2)設P是橢圓E上一點,過P作兩條斜率之積為
1
2
的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.
B組:如圖,在平面直角坐標系xoy中,橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0).已知點(1,e)和(e,
3
2
)
都在橢圓上,其中e為橢圓離心率.
(1)求橢圓的方程;
(2)設A,B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P,若AF1-BF2=
6
2
,求直線AF1的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省2012屆高三調(diào)研考試數(shù)學理科試題 題型:044

如圖,橢圓C:x2+3y2=3b2(b>0).

(Ⅰ)求橢圓C的離心率;

(Ⅱ)若b=1,AB是橢圓C上兩點,且|AB|=,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年甘肅省張掖中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

A組:直角坐標系xoy中,已知中心在原點,離心率為的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.
(1)求橢圓E的方程;
(2)設P是橢圓E上一點,過P作兩條斜率之積為的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.
B組:如圖,在平面直角坐標系xoy中,橢圓的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0).已知點(1,e)和都在橢圓上,其中e為橢圓離心率.
(1)求橢圓的方程;
(2)設A,B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P,若,求直線AF1的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年甘肅省張掖中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

A組:直角坐標系xoy中,已知中心在原點,離心率為的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.
(1)求橢圓E的方程;
(2)設P是橢圓E上一點,過P作兩條斜率之積為的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.
B組:如圖,在平面直角坐標系xoy中,橢圓的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0).已知點(1,e)和都在橢圓上,其中e為橢圓離心率.
(1)求橢圓的方程;
(2)設A,B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P,若,求直線AF1的斜率.

查看答案和解析>>

同步練習冊答案