如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,點E,F(xiàn)分別是BC,PB的中點.
(Ⅰ)證明:EF∥平面PAC;
(Ⅱ)當AD等于何值時,二面角P-DE-A的大小為30°.
考點:與二面角有關的立體幾何綜合題,直線與平面平行的判定
專題:空間角
分析:(Ⅰ)由已知條件知EF是△PBC的中位線,由此能證明EF∥平面PAC.
(Ⅱ)以A為原點,AD為x軸,AB為y軸,AP為z軸,建立空間直角坐標系,利用向量法能求出當AD等于2
3
時,二面角P-DE-A的大小為30°.
解答: (Ⅰ)證明:點E,F(xiàn)分別是BC,PB的中點,
∴EF是△PBC的中位線,
∴EF∥PC,
∵EF?平面PAC,PC?平面PAC,
∴EF∥平面PAC.
(Ⅱ)解:PA⊥平面ABCD,
ABCD是矩形,PA=AB=1,
點E,F(xiàn)分別是BC,PB的中點,
以A為原點,AD為x軸,AB為y軸,AP為z軸,
建立空間直角坐標系,
設AD=a,則A(0,0,0),
P(0,0,1),D(a,0,0),
E(
a
2
,1,0
),∴
PD
=(a,0,-1),
DE
=(-
a
2
,1,0)
,
設平面PDE的法向量為
n
=(x,y,z)
,
n
PD
=ax-z=0
n
DE
=-
a
2
x+y=0
,取x=1,得
n
=(1,
a
2
,a)
,
又平面ADE的法向量
m
=(0,0,1)
,
∵二面角P-DE-A的大小為30°,
∴cos30°=|cos<
n
,
m
>|=|
1
1+
a2
4
+a2
|=
3
2
,
解得a=2
3
或a=-2
3
(舍).
∴當AD等于2
3
時,二面角P-DE-A的大小為30°.
點評:本題考查直線與平面平行的證明,考查二面角的大小為30°時,線段長的求法,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知離心率為
1
2
的橢圓C1的左、右焦點分別為F1,F(xiàn)2,拋物線C2:y2=4x的焦點為F2,
(Ⅰ)求橢圓C1的標準方程;
(Ⅱ)若過焦點F2的直線l與拋物線C2交于A,B兩點,問在橢圓C1上且在直線l外是否存在一點M,使直線MA,MF2,MB的斜率依次成等差數(shù)列,若存在,請求出點M的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四棱柱ABCD-A1B1C1D1中,底面為平行四邊形,以頂點A為端點的三條棱長都為1,且兩兩夾角為60°,設
AB
=
a
,
AD
=
b
,
AA1
=
c

(1)求AC1的長;
(2)求BD1與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖(1),在等腰梯形CDEF中,CB,DA是梯形的高,AE=BF=2,AB=2
2
,現(xiàn)將梯形沿CB,DA折起,使EF∥AB且EF=2AB,得一簡單組合體ABCDEF如圖(2)示,已知M,N分別為AF,BD的中點.
(Ⅰ)求證:MN∥平面BCF;
(Ⅱ)若直線DE與平面ABFE所成角的正切值為
2
2
,則求平面CDEF與平面ADE所成的銳二面角大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2+bx,a≠0.
(1)若b=2,且函數(shù)h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)當a=3,b=2時,求函數(shù)h(x)=f(x)-g(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了4次試驗.收集數(shù)據(jù)如下:
零件個數(shù)x(個) 1 2 3 4
加工時間y(小時) 2 3 5 8
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程
y
=
b
x+
a
;
(Ⅲ)現(xiàn)需生產(chǎn)20件此零件,預測需用多長時間?
(注:用最小二乘法求線性回歸方程系數(shù)公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+2與直線4x-y+5=0切于點P(-1,1)
(1)求實數(shù)a,b的值;
(2)求函數(shù)單調(diào)區(qū)間;
(3)若x>0時,不等式f(x)≥mx2-2x+2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=(
1
3
x是指數(shù)函數(shù)(小前提),所以函數(shù)y=(
1
3
x是增函數(shù)(結(jié)論)”,上面推理的錯誤在于
 
錯誤導致結(jié)論錯.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明:若a,b,c均為實數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求證:a,b,c中至少有一個大于0.

查看答案和解析>>

同步練習冊答案