m為實(shí)數(shù),復(fù)數(shù)z=
m2-m-6
m+3
+(m2-2m-15)i.
(1)z是實(shí)數(shù)時(shí),求m;
(2)z是純虛數(shù)時(shí),求z.
考點(diǎn):復(fù)數(shù)的基本概念
專題:計(jì)算題,數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)由實(shí)數(shù)的定義可得方程組,解出即可;
(2)由純虛數(shù)的定義可得方程組,解出即可;
解答: 解:(1)由
m2-2m-15=0
m+3≠0
m=5或m=-3
m≠-3
,
∴Z是實(shí)數(shù)時(shí),m=5.
(2)由
m2-2m-15≠0
m+3≠0
m2-m-6=0
⇒m=3或m=-2
,
∴當(dāng)m=3時(shí),Z=-12i;當(dāng)m=-2時(shí),Z=-7i.
點(diǎn)評:該題考查復(fù)數(shù)的基本概念,屬基礎(chǔ)題,熟記復(fù)數(shù)的相關(guān)概念是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐A-BCD中,AC⊥底面BCD,BD⊥DC,BD=DC,AC=1,∠ABC=30°,則C到平面ABD的距離是( 。
A、
5
5
B、
15
5
C、
3
5
D、
15
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:(m2+1)x2-4x+1≥0(m∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的而距離為
π
2

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)用五點(diǎn)作圖法畫出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是邊長為2的正方形,PD⊥平面ABCD,PD=2,E為AB的中點(diǎn).
(1)求證:直線BC⊥平面PDC;
(2)求點(diǎn)E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體AC1中AB=2,E為BB1的中點(diǎn).
(1)請?jiān)诰段DD1上確定一點(diǎn)F使A,E,C1,F(xiàn)四點(diǎn)共面,并加以證明;
(2)求二面角C-AC1-E的平面角α的余弦值;
(3)點(diǎn)M在面ABCD內(nèi),且點(diǎn)M在平面AEC1F上的射影恰為△AEC1的重心,求異面直線AC與MC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,平面PBD⊥平面ABCD,AD=2,PD=2
5
,AB=PB=4,∠BAD=60°.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)E是側(cè)棱PC上一點(diǎn),記
PE
PC
=λ,當(dāng)PB⊥平面ADE時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinωx,
3
sinωx),
b
=(sinωx,sin(
π
2
+ωx)),(ω>0),f(x)=
a
b
-
1
2
且f(x)的最小正周期是π.
(Ⅰ)求ω的值;
(Ⅱ)若f(α)=
4
5
π
3
≤a≤
7
12
π),求sin2α值;
(Ⅲ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=-
π
2
對稱,且方程g(x)-k=0在區(qū)間[-
3
2
π,-π]上有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x+y=1,求x3+y3+3xy的值.

查看答案和解析>>

同步練習(xí)冊答案