(理)某公司有10萬元資金用于投資,如果投資甲項(xiàng)目,根據(jù)市場分析知道:一年后可能獲利10%,可能損失10%,可能不賠不賺,這三種情況發(fā)生的概率分別為,,;如果投資乙項(xiàng)目,一年后可能獲利20%,也可能損失20%,這兩種情況發(fā)生的概率分別為α和β(α+β=1).

(1)如果把10萬元投資甲項(xiàng)目,用ξ表示投資收益(收益=回收資金-投資資金),求ξ的概率分布及Eξ;

(2)若把10萬元資金投資乙項(xiàng)目的平均收益不低于投資甲項(xiàng)目的平均收益,求α的取值范圍.

(文)在某次數(shù)學(xué)實(shí)驗(yàn)中,要求:實(shí)驗(yàn)者從裝有8個黑球、2個白球的袋中每次隨機(jī)地摸出一個球,記下顏色后放回.現(xiàn)有甲、乙兩名同學(xué),規(guī)定甲摸一次,乙摸兩次.求

(1)甲摸出白球的概率;

(2)乙恰好摸出一次白球的概率;

(3)甲、乙兩人中至少有一個人摸出白球的概率.

答案:(理)解:(1)依題意,ξ的可能取值為1,0,-1,

ξ的分布列為

ξ

1

0

-1

P

Eξ=-=.

(2)設(shè)η表示10萬元投資乙項(xiàng)目的收益,則η的分布列為

η

2

-2

P

α

β

Eη=2α-2β=4α-2.

依題意要求4α-2≥,∴≤α≤1.

注:只寫出α≥扣1分.

(文)解:(1)設(shè)“甲摸出了白球”為事件A,則P(A)==.

(2)設(shè)“乙恰好摸出了一次白球”為事件B,則P(B)=.

(3)設(shè)“甲、乙兩人中至少有一個人摸出白球”為事件C,則P(C)=1×()2=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司有10萬元資金用于投資,如果投資甲項(xiàng)目,根據(jù)市場分析知道:一年后可能獲利10%,可能損失10%,可能不賠不賺,這三種情況發(fā)生的概率分別為
1
2
,
1
4
1
4
;如果投資乙項(xiàng)目,一年后可能獲利20%,也可能損失20%,這兩種情況發(fā)生的概率分別為α和β(α+β=1).
(Ⅰ)如果把10萬元投資甲項(xiàng)目,用ξ表示投資收益(收益=回收資金-投資資金),求ξ的期望Eξ;
(Ⅱ)若把10萬元投資投資乙項(xiàng)目的平均收益不低于投資甲項(xiàng)目的平均收益,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司有10萬元資金用于投資開發(fā)項(xiàng)目,如果成功,一年后可獲利12%;一旦失敗,一年后將喪失全部資金的50%,下表是過去200例類似項(xiàng)目開發(fā)的實(shí)施結(jié)果:
投資成功 投資失敗
192 8
則該公司一年后估計(jì)可獲收益的期望是
9520
9520
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司有10萬元資金用于投資,如果投資甲項(xiàng)目,根據(jù)市場分析知道:一年后可能獲利10%,可能損失10%,可能不賠不賺,這三種情況發(fā)生的概率分別為
1
2
1
4
,
1
4
;如果投資乙項(xiàng)目,一年后可能獲利20%,也可能損失20%,這兩種情況發(fā)生的概率分別為α和β(α+β=1).
(1)如果把10萬元投資甲項(xiàng)目,用ξ表示投資收益(收益=回收資金-投資資金),求ξ的概率分布及Eξ;
(2)若把10萬元投資乙項(xiàng)目的平均收益不低于投資甲項(xiàng)目的平均收益,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧德模擬)某公司有10萬元資金,計(jì)劃投資甲、乙兩個項(xiàng)目,項(xiàng)目甲每投資1萬元可獲利0.2萬元,項(xiàng)目乙每投資1萬元可獲利0.3萬元.按要求項(xiàng)目甲的投資資金不低于項(xiàng)目乙投資資金的
23
,且每個項(xiàng)目的投資資金不能低于2萬元,則投資甲、乙兩個項(xiàng)目可獲得的最大利潤為
2.6
2.6
萬元.

查看答案和解析>>

同步練習(xí)冊答案