(本小題滿分14分)
如圖:某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道,是直角頂點(diǎn))來(lái)處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計(jì)要求管道的接口是的中點(diǎn),分別落在線段上。已知米,米,記。
(Ⅰ)試將污水凈化管道的長(zhǎng)度表示為的函數(shù),并寫(xiě)出定義域;
(Ⅱ)若,求此時(shí)管道的長(zhǎng)度;
(Ⅲ)問(wèn):當(dāng)取何值時(shí),鋪設(shè)管道的成本最低?并求出此時(shí)管道的長(zhǎng)度。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)當(dāng)x∈[2,4]時(shí).求該函數(shù)的值域;
(2)若恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題13分)已知函數(shù)f(x)=- (a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在[,2]上的值域是[,2],求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知奇函數(shù)f(x)在定義域[-2,2]內(nèi)單調(diào)遞減,求滿足f(1-m)+f(1-m2)<0的實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義函數(shù).
(1)令函數(shù)的圖象為曲線,若存在實(shí)數(shù),使得曲線在處有斜率是的切線,求實(shí)數(shù)的取值范圍;
(2)當(dāng),且時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿足以下三個(gè)條件:
①、是定義域中的數(shù)時(shí),有;
②是定義域中的一個(gè)數(shù));
③當(dāng)時(shí),.
(1)判斷與之間的關(guān)系,并推斷函數(shù)的奇偶性;
(2)判斷函數(shù)在上的單調(diào)性,并證明;
(3)當(dāng)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/6/jlh2f1.png" style="vertical-align:middle;" />時(shí),
①求的值;②求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)已知函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng),并且當(dāng)時(shí),,試求在上的表達(dá)式,并畫(huà)出它的圖像,根據(jù)圖像寫(xiě)出它的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)已知函數(shù)
(1)若,求x的值;
(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com