精英家教網 > 高中數學 > 題目詳情

【題目】已知△ABC的三個內角A,B,C所對的邊分別為a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大。
(2)若a=3,求△ABC周長的取值范圍.

【答案】
(1)解:∵ .∴ =(c+a)(c﹣a)+b(b﹣c)=c2﹣a2+b2﹣bc=0,化為:c2+b2﹣a2=bc.

∴cosA= = ,A∈(0,π).

∴A=


(2)解:由正弦定理可得: = = =2 ,

∴b=2 sinB,c=2 sinC,

∴a+b+c=3+2 (sinB+sinC)=3+2 (sinB+sinC)=3+2 (sin( )+sinC)

=6sin +3,

∵C∈ ,∴ ,

∴sin

∴a+b+c∈(6,9]


【解析】(1)由 .可得 =(c+a)(c﹣a)+b(b﹣c)=0,化為:c2+b2﹣a2=bc.利用余弦定理即可得出.(2)由正弦定理可得: = = =2 ,b=2 sinB,c=2 sinC,利用和差公式可得:a+b+c=3+2 (sinB+sinC)=6sin +3,再利用三角函數的單調性值域即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數  上是增函數,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x),g(x)都是定義在R上的函數,且滿足以下條件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
,則a=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為考察高中生的性別與是否喜歡數學課程之間的關系,在某城市的某校高中生中,從男生中隨機抽取了70人,從女生中隨機抽取了50人,男生中喜歡數學課程的占,女生中喜歡數學課程的占,得到如下列聯表.

喜歡數學課程

不喜歡數學課程

合計

男生

女生

合計

(1)請將列聯表補充完整;試判斷能否有90%的把握認為喜歡數學課程與否與性別有關;

(2)從不喜歡數學課程的學生中采用分層抽樣的方法,隨機抽取6人,現從6人中隨機抽取2人,求抽取的學生中至少有1名是女生的概率..

附:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)是定義在(﹣∞,+∞)上的增函數,實數a使得f(1﹣ax﹣x2)<f(2﹣a)對于任意x∈[0,1]都成立,則實數a的取值范圍是(
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2
D.[0,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C (ab0)的離心率為,且過點(1, )過橢圓C的左頂點A作直線交橢圓C于另一點P,交直線lxm(ma)于點M.已知點B(1,0),直線PBl于點N

(Ⅰ)求橢圓C的方程;

(Ⅱ)若MB是線段PN的垂直平分線,求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,cosB

(Ⅰ)若c2a,求的值;

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M,N分別是AF,BC的中點

(1)求證:MN∥平面CDEF:
(2)求二面角A﹣CF﹣B的余弦值;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解下列各題:
(1)求下列橢圓5x2+9y2=100的焦點和頂點的坐標;
(2)求拋物線 y2﹣6x=0的焦點坐標,準線方程和對稱軸;
(3)求焦點在x軸上,兩頂點間的距離是8,e= 的 雙曲線的標準方程.

查看答案和解析>>

同步練習冊答案