下列給出的四組函數(shù)是同一個(gè)函數(shù)的是(    )

A.f(x)=x,g(x)=(2                  B.f(x)=x,g(x)=

C.f(x)=x,g(x)=                       D.f(x)=1,g(x)=x0

解析:要判斷兩個(gè)函數(shù)是否為同一個(gè)函數(shù),關(guān)鍵是看兩個(gè)函數(shù)的定義域和對應(yīng)法則是否相同.對于A,f(x)=x的定義域?yàn)?B>R,g()=(x)2的定義域?yàn)閧x|x≥0},兩函數(shù)定義域不相同,所以不是同一個(gè)函數(shù);對于B,g(x)==|x|,它與f(x)=x的對應(yīng)法則不一樣,所以不是同一個(gè)函數(shù);對于C,g(x)==x,它與f(x)=x是同一個(gè)函數(shù);對于D,g(x)=x0=1,其定義域?yàn)閧x|x≠0},它與f(x)=1的定義域不同.

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)在區(qū)間(-∞,+∞)可導(dǎo),其導(dǎo)數(shù)為f′(x),給出下列四組條件p是q的充分條件的是( 。
①p:f(x)是奇函數(shù),q:f′(x)是偶函數(shù)
②p:f(x)是以T為周期的函數(shù),q:f′(x)是以T為周期的函數(shù)
③p:f(x)在區(qū)間(-∞,+∞)上為增函數(shù),q:f′(x)>0在(-∞,+∞)恒成立
④p:f(x)在x0處取得極值,q:f′(x0)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年遼寧省大連市高考數(shù)學(xué)壓軸卷 (理科)(解析版) 題型:選擇題

設(shè)f(x)在區(qū)間(-∞,+∞)可導(dǎo),其導(dǎo)數(shù)為f′(x),給出下列四組條件p是q的充分條件的是( )
①p:f(x)是奇函數(shù),q:f′(x)是偶函數(shù)
②p:f(x)是以T為周期的函數(shù),q:f′(x)是以T為周期的函數(shù)
③p:f(x)在區(qū)間(-∞,+∞)上為增函數(shù),q:f′(x)>0在(-∞,+∞)恒成立
④p:f(x)在x處取得極值,q:f′(x)=0.
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年東北三省三校高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

設(shè)f(x)在區(qū)間(-∞,+∞)可導(dǎo),其導(dǎo)數(shù)為f′(x),給出下列四組條件p是q的充分條件的是( )
①p:f(x)是奇函數(shù),q:f′(x)是偶函數(shù)
②p:f(x)是以T為周期的函數(shù),q:f′(x)是以T為周期的函數(shù)
③p:f(x)在區(qū)間(-∞,+∞)上為增函數(shù),q:f′(x)>0在(-∞,+∞)恒成立
④p:f(x)在x處取得極值,q:f′(x)=0.
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年遼寧省大連市高考數(shù)學(xué)壓軸卷 (文科)(解析版) 題型:選擇題

設(shè)f(x)在區(qū)間(-∞,+∞)可導(dǎo),其導(dǎo)數(shù)為f′(x),給出下列四組條件p是q的充分條件的是( )
①p:f(x)是奇函數(shù),q:f′(x)是偶函數(shù)
②p:f(x)是以T為周期的函數(shù),q:f′(x)是以T為周期的函數(shù)
③p:f(x)在區(qū)間(-∞,+∞)上為增函數(shù),q:f′(x)>0在(-∞,+∞)恒成立
④p:f(x)在x處取得極值,q:f′(x)=0.
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

同步練習(xí)冊答案