(本小題滿分15分)

如圖,四邊形為矩形,點(diǎn)的坐標(biāo)分別為、,點(diǎn)上,坐標(biāo)為,橢圓分別以為長(zhǎng)、短半軸,是橢圓在矩形內(nèi)部的橢圓弧.已知直線與橢圓弧相切,且與相交于點(diǎn)

(Ⅰ)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)在矩形內(nèi)部,且與和線段EA都相切,若直線將矩形分成面積相等的兩部分,求圓M面積的最大值.

解:(1)解:設(shè)橢圓的方程為.  

 消去y.  …………………3分

由于直線l與橢圓相切,,

化簡(jiǎn)得,          ①    

當(dāng)時(shí),

市高三數(shù)學(xué)(理)參答—2(共4頁(yè))

 
則橢圓的標(biāo)準(zhǔn)方程為.                   ………………………6分

(2)由題意知,,

于是的中點(diǎn)為.   

因?yàn)?img width=9 height=19 src="http://thumb.zyjl.cn/pic1/0688/53/88053.gif" >將矩形分成面積相等的兩部分,所以過(guò)點(diǎn),

,亦即.         ② 

由①②解得,故直線的方程為    ………………9分

.

因?yàn)閳A與線段相切,所以可設(shè)其方程為.

因?yàn)閳A在矩形及其內(nèi)部,所以      ④    

相切,且圓上方,所以,即.

代入④得  

所以圓面積最大時(shí),,這時(shí),圓面積的最大值為.………15分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試分別解答以下兩小題.

(。┤舨坏仁對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;

(ⅱ)若是兩個(gè)不相等的正數(shù),且,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分15分).

已知、分別為橢圓

上、下焦點(diǎn),其中也是拋物線的焦點(diǎn),

點(diǎn)在第二象限的交點(diǎn),且

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點(diǎn)P(1,3)和圓,過(guò)點(diǎn)P的動(dòng)直線與圓相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:,)。求證:點(diǎn)Q總在某定直線上。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分15分)

如圖已知,橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線與橢圓相交于A、B兩點(diǎn)。

(Ⅰ)若,且,求橢圓的離心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052202033078124869/SYS201205220205036875888611_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說(shuō)明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:

(1)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案