9、已知{an}是等差數(shù)列,a1=3,a4+a6=8,則a9=
5
分析:本題考察的知識(shí)點(diǎn)是等差數(shù)列的性質(zhì),觀察到已知條件中已知的三個(gè)項(xiàng),序號(hào)分別為1,4,6,未知項(xiàng)序號(hào)為9,易想到利用在等差數(shù)列中:若m+n=p+q,則am+an=ap+aq,進(jìn)行求解.
解答:解:由等差數(shù)列的性質(zhì),我們易得
a1+a9=a4+a6
又∵a1=3,a4+a6=8,
∴a9=5
故答案為:5
點(diǎn)評(píng):在等差數(shù)列中:若m+n=p+q,則am+an=ap+aq;
在等比數(shù)列中:若m+n=p+q,則am•an=ap•aq
這是等差數(shù)列和等比數(shù)列最重要的性質(zhì)之一,大家一定要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù){an}的前n項(xiàng)和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數(shù)列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
(II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案