5.已知復(fù)數(shù)m=4-xi,n=3+2i,若復(fù)數(shù)$\frac{n}{m}$∈R,則實(shí)數(shù)x的值為(  )
A.-6B.6C.$\frac{8}{3}$D.-$\frac{8}{3}$

分析 把m=4-xi,n=3+2i代入$\frac{n}{m}$,然后由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再結(jié)合已知條件求解即可得答案.

解答 解:由m=4-xi,n=3+2i,
得$\frac{n}{m}=\frac{3+2i}{4-xi}=\frac{(3+2i)(4+xi)}{(4-xi)(4+xi)}$=$\frac{12-2x+(8+3x)i}{16+{x}^{2}}$=$\frac{12-2x}{16+{x}^{2}}+\frac{8+3x}{16+{x}^{2}}i$,
∵復(fù)數(shù)$\frac{n}{m}$∈R,
∴$\frac{8+3x}{16+{x}^{2}}=0$,解得x=$-\frac{8}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某學(xué)校為了解本校學(xué)生的身體素質(zhì)情況,決定在全校的1000名男生和800名女生中按分層抽樣的方法抽取45名學(xué)生對(duì)他們課余參加體育鍛煉時(shí)間進(jìn)行問卷調(diào)查,將學(xué)生課余參加體育鍛煉時(shí)間的情況分三類:A類(課余參加體育鍛煉且平均每周參加體育鍛煉的時(shí)間超過3小時(shí)),B類(課余參加體育鍛煉但平均每周參加體育鍛煉的時(shí)間不超過3小時(shí)),C類(課余不參加體育鍛煉),調(diào)查結(jié)果如表:
  A類B類 C類 
 男生 18 x 3
 女生 10 8 y
(1)求出表中x、y的值;
(2)根據(jù)表格統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為課余參加體育鍛煉且平均每周參加體育鍛煉的時(shí)間超過3小時(shí)與性別有關(guān);
  男生女生 總計(jì) 
 A類   
 B類和C類   
 總計(jì)   
(3)在抽取的樣本中,從課余不參加體育鍛煉學(xué)生中隨機(jī)選取三人進(jìn)一步了解情況,求選取三人中男女都有且男生比女生多的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.10 0.05 0.01 
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,在邊長為4的正三角形ABC中,D,F(xiàn)分別為AB,AC的中點(diǎn),E為AD的中點(diǎn).將△BCD與△AEF分別沿CD,EF同側(cè)折起,使得二面角A-EF-D與二面角B-CD-E的大小都等于90°,得到如圖2所示的多面體.

(1)在多面體中,求證:A,B,D,E四點(diǎn)共同面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,右焦點(diǎn)為F,若以A為圓心,過點(diǎn)F的圓與直線3x-4y=0相切,則雙曲線的離心率為( 。
A.$\frac{7}{4}$B.$\frac{7}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.($\frac{2}{x}$+x+1)(1-2$\sqrt{x}$+x)4的展開式中x的系數(shù)是169(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓x2+2y2=1的左、右焦點(diǎn)分別為F1、F2,過橢圓上任意一點(diǎn)P作切線l,記F1、F2到l的距離分別為d1、d2,則d1•d2=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在銳角△ABC中,AB=3,AC=4,若△ABC的面積為3$\sqrt{3}$,則BC的長是$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.體積為$18\sqrt{3}$的正三棱錐A-BCD的每個(gè)頂點(diǎn)都在半徑為R的球O的球面上,球心O在此三棱錐內(nèi)部,且R:BC=2:3,點(diǎn)E為線段BD上一點(diǎn),且DE=2EB,過點(diǎn)E作球O的截面,則所得截面圓面積的取值范圍是(  )
A.[4π,12π]B.[8π,16π]C.[8π,12π]D.[12π,16π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在(x+1)(x3+$\frac{1}{\sqrt{x}}$)n的展開式中,各項(xiàng)系數(shù)的和為256,則x項(xiàng)的系數(shù)是7(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案