已知橢圓的準(zhǔn)線平行于x軸,長軸長是短軸長的3倍,且過點(diǎn)(2,3).
(Ⅰ)求橢圓的離心率; 
(Ⅱ)求橢圓的標(biāo)準(zhǔn)方程,并寫出準(zhǔn)線方程.
(Ⅰ)設(shè)橢圓的方程是
y2
a2
+
x2
b2
=1,
∵長軸長是短軸長的3倍,
∴a=3b,
∴c=
a 2-b 2
=2
2
b,
∴橢圓的離心率為:
e=
c
a
=
2
2
b
3b
=
2
2
3
(4分)
(Ⅱ)由題設(shè),中心在坐標(biāo)原點(diǎn)的橢圓過點(diǎn)(2,3),且a=3b,
9
a2
+
4
b2
=1,又a2=c2+b2
三式聯(lián)立可以解得a=3
5
,b=
5
,c=2
10

故該橢圓的方程為:
y2
45
+
x2
5
=1
(6分),
準(zhǔn)線:y=±
9
10
4
(2分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的準(zhǔn)線平行于x軸,長軸長是短軸長的3倍,且過點(diǎn)(2,3).
(Ⅰ)求橢圓的離心率; 
(Ⅱ)求橢圓的標(biāo)準(zhǔn)方程,并寫出準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)已知橢圓的中心在原點(diǎn)O,短軸長為,其焦點(diǎn)F(c,0)(c>0)對(duì)應(yīng)的準(zhǔn)線lx軸交于A點(diǎn),|OF|=2|FA|,過A的直線與橢圓交于P、Q兩點(diǎn).

   (1)求橢圓的方程;(2)若,求直線PQ的方程;  (3)設(shè),過點(diǎn)P且平行于準(zhǔn)線l的直線與橢圓相交于另一點(diǎn)M. 求證F、M、Q三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的準(zhǔn)線平行于x軸,長軸長是短軸長的3倍,且過點(diǎn)(2,3).
(Ⅰ)求橢圓的離心率;
(Ⅱ)求橢圓的標(biāo)準(zhǔn)方程,并寫出準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年湖南省永州市祁陽二中高二(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的準(zhǔn)線平行于x軸,長軸長是短軸長的3倍,且過點(diǎn)(2,3).
(Ⅰ)求橢圓的離心率; 
(Ⅱ)求橢圓的標(biāo)準(zhǔn)方程,并寫出準(zhǔn)線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案