【題目】已知實數(shù)a>0, 方程 有且僅有兩個不等實根,且較大的實根大于3,則實數(shù)a的取值范圍 .
【答案】
【解析】解:設比較大的根為x1 , 則x1>3, 此時由 =log3x>log33=1,
即a ,即a .
∵方程 有且僅有兩個不等實根,
∴當x≤1時,方程 有且僅有1實根,
即﹣x ,在x≤1時,只有一個根.
∴x ,
設g(x)=x ,(x≤1),
函數(shù)的對稱軸為x=a,
若a≥1,
∵g(0)= ,
∴此時滿足g(1)≤0,(圖1)
即g(1)=1﹣2a+ ≤0,
∴7a2﹣32a+16≤0,
解得 ,∴此時1≤a≤4,.
若0<a<1,
∵g(0)= ,
∴此時滿足g(1)<0,
即g(1)=1﹣2a+ <0,
∴77a2﹣32a+16<0,
解得 ,∴此時 ,
∴ ,
又a ,
∴ ,
即實數(shù)a的取值范圍是 ,
所以答案是: .
【考點精析】關于本題考查的函數(shù)的零點與方程根的關系和函數(shù)的零點,需要了解二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點;函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標.即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點,在這個正四面體中,
①GH與EF平行;②BD與MN為異面直線;③GH與MN成60°角;④DE與MN垂直.以上四個命題中,正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)學歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 時,由n=k的假設到證明n=k+1時,等式左邊應添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,G1 , G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關系是( )
A.相交
B.平行
C.異面
D.以上都有可能
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出的普通方程和的直角坐標方程;
(2)設點在上,點在上,求的最小值及此時的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以點C(t, )(t∈R,t≠0)為圓心的圓過原點O.
(1)設直線3x+y﹣4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程;
(2)在(1)的條件下,設B(0,2),且P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PQ|﹣|PB|的最大值及此時點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內角A,B,C所對的邊分別為a,b,c,若三個內角A,B,C成等差數(shù)列,且a= ,b= ,求sinC的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com