以拋物線y2=12x的焦點為圓心,且與雙曲線
x2
16
-
y2
9
=1
的兩條漸近線相切的圓的方程為______.
由拋物線y2=12x可得焦點F(3,0),即為所求圓的圓心.
由雙曲線
x2
16
-
y2
9
=1
得a2=16,b2=9,解得a=4,b=3.
得兩條漸近線方程為y=±
3
4
x

取漸近線3x+4y=0.
則所求圓的半徑r=
|3×3+0|
32+42
=
9
5

因此所求的圓的標準方程為:(x-3)2+y2=
81
25

故答案為:(x-3)2+y2=
81
25
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線
x2
a2
-
y2
b2
=1
的左焦點F作⊙O:x2+y2=a2的兩條切線,記切點為A,B,雙曲線左頂點為C,若∠ACB=120°,則雙曲線的漸近線方程為(  )
A.y=±
3
x
B.y=±
3
3
x
C.y=±
2
x
D.y=±
2
2
x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若焦點在x軸的雙曲線的一條漸近線為y=
1
2
x
,則它的離心率e=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1,F(xiàn)2是雙曲線
x2
4
-y2=1
的左右焦點,點P在雙曲線上,且∠F1PF2=90°,則點P到x軸的距離為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線
x2
a2
-y2=1(a>0)的一個焦點與拋物線x=
1
8
y2的焦點重合,則此雙曲線的離心率為( 。
A.
3
3
2
B.
3
C.
2
3
3
D.
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線
x2
4
-
y2
8
=1
的實軸長是( 。
A.2B.2
2
C.4D.4
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與直線y=
3
x無交點,則離心率e的取值范圍( 。
A.(1,2)B.(1,2]C.(1,
5
D.(1,
5
]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設經(jīng)過雙曲線x2-
y2
3
=1
的左焦點F1作傾斜角為
π
6
的直線與雙曲線左右兩支分別交于點A,B.求
(I)線段AB的長;
(II)設F2為右焦點,求△F2AB的周長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設雙曲線C:
x2
2
-y2=1
的左、右頂點分別為A1、A2,垂直于x軸的直線a與雙曲線C交于不同的兩點S、T.
(1)求直線A1S與直線A2T的交點H的軌跡E的方程;
(2)設A,B是曲線E上的兩個動點,線段AB的中垂線與曲線E交于P,Q兩點,直線l:x=
1
2
,線段AB的中點M在直線l上,若F(1,0),求
FP
FQ
的取值范圍.

查看答案和解析>>

同步練習冊答案