2
1
3x2dx=
 
(用數(shù)字作答).
考點:定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:運用微積分基本定理和定積分的運算律計算即可.
解答: 解:
2
1
3x2dx=(x3
|
2
1
=23-1=7,
故答案為:7
點評:本題主要考查了定積分,運用微積分基本定理計算定積分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)設(shè)A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k,則動點P的軌跡為雙曲線;
(2)若等比數(shù)列的前n項和sn=2n+k,則必有k=-1;
(3)若x∈R+,則2x+2-x的最小值為2;
(4)雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點;
(5)平面內(nèi)到定點(3,-1)的距離等于到定直線x+2y-1=0的距離的點的軌跡是拋物線.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:“
1
n+1
+
1
n+2
+…+
1
3n+1
≥1( n∈N+)”時,在驗證初始值不等式成立時,左邊的式子應(yīng)是“
 
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一大學(xué)生畢業(yè)找工作,在面試考核中,他共有三次答題機會(每次問題不同).假設(shè)他能正確回答每題的概率均為
2
3
,規(guī)定有兩次回答正確即通過面試,那么該生“通過面試”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
(1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)某工廠加工的某種鋼管,內(nèi)徑與規(guī)定的內(nèi)徑尺寸之差是離散型隨機變量;
(3)隨機變量的方差和標準差都反映了隨機變量的取值偏離于均值的平均程度,它們越小,則隨機變量偏離于均值的平均程度越小;
(4)甲、乙兩人向同一目標同時射擊一次,事件A:“甲、乙中至少一人擊中目標”與事件B:“甲,乙都沒有擊中目標”是相互獨立事件.
其中結(jié)論正確的是
 
.(把所有正確結(jié)論的序號填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①設(shè)有一批產(chǎn)品,其次品率為0.05,則從中任取200件,必有10件次品;
②做100次拋硬幣的試驗,有51次出現(xiàn)正面.因此出現(xiàn)正面的概率是0.51;
③隨機事件A的概率是頻率值,頻率是概率的近似值;
④隨機事件A的概率趨近于0,即P(A)→0,則A是不可能事件;
⑤拋擲骰子100次,得點數(shù)是1的結(jié)果是18次,則出現(xiàn)1點的頻率是
9
50
;
⑥隨機事件的頻率就是這個事件發(fā)生的概率;
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標xOy中,設(shè)圓M的半徑為1,圓心在直線x-y-1=0上,若圓M上不存在點N,使NO=
1
2
NA,其中A(0,3),則圓心M橫坐標的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=1+8i,z2=3+4i,其中i是虛數(shù)單位,則復(fù)數(shù)(z1-z2)i的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體的邊長為a,則該正方體的外接球的直徑長( 。
A、a
B、2a
C、
2
a
D、
3
a

查看答案和解析>>

同步練習(xí)冊答案