5.數(shù)列{an}滿足a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),則$\sum_{i=1}^{100}$ai=1.

分析 利用a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),可得an+3=an.即可得出.

解答 解:∵a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),
∴a3=$\frac{{2}^{2}-7}{1}$=-3,a4=$\frac{(-3)^{2}-7}{2}$=1,a5=$\frac{{1}^{2}-7}{-3}$=2,…,
∴an+3=an
則$\sum_{i=1}^{100}$ai=33(a1+a2+a3)+a1=0+1=1.
故答案為:1.

點評 本題考查了數(shù)列遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,b>0})$的一條漸近線過點(2,2),則雙曲線的離心率等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,在底面為正方形的四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,PA⊥AD,PA=AD,則異面直線PB與AC所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)-kx+$\frac{2}{3}$=0恰有四個不相等的實數(shù)根,則實數(shù)k的取值范圍是($\frac{2}{3}$,$\frac{\root{3}{{e}^{2}}}{e}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=-x3+3x2+9x+a,x∈[-2,2]的最小值為-2,則f(x)的最大值為( 。
A.25B.23C.21D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx.
(Ⅰ)y=kx與f(x)相切,求k的值;
(Ⅱ)證明:當a≥1時,對任意x>0不等式f(x)≤ax+$\frac{a-1}{x}$-1恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.與雙曲線2x2-y2=3有相同漸近線,且過點P(1,2)的雙曲線的方程為( 。
A.2x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{2}$-x2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.調(diào)查某高中1000名學生的肥胖情況,得如表:
  偏瘦正常 肥胖 
 女生(人) 100163 
 男生(人) x 187 z
已知從這批學生中隨機抽取1名學生,抽到偏瘦男生的概率為0.15
(Ⅰ)求x的值
(Ⅱ)若用分層抽樣的方法,從這批學生中隨機抽取100名,問應在肥胖學生中抽多少名?
(Ⅲ)已知y≥194,z≥193,求肥胖學生中男生不少于女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函數(shù)F(x)=f(x)+x-a有且僅有兩個零點,則實數(shù)a的取值范圍是a≤1.

查看答案和解析>>

同步練習冊答案