精英家教網 > 高中數學 > 題目詳情
已知點H(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上,且滿足,
(Ⅰ)當點P在y軸上移動時,求點M的軌跡C;
(Ⅱ)過定點D(m,0)(m>0)作直線l交軌跡C于A、B兩點,E是D點關于坐標原點O的對稱點,求證:∠AED=∠BED;
(Ⅲ)在(Ⅱ)中,是否存在垂直于x軸的直線l'被以AD為直徑的圓截得的弦長恒為定值?若存在求出l'的方程;若不存在,請說明理由.

【答案】分析:(I)設M(x,y),P(0,y'),Q(x',0)則可得 ,由 代入整理可求點M的軌跡C;
(II)要證明∠AED=∠BED,根據直線的傾斜角與斜率的關系,只要證KAE=-KBE即可;分兩種情況討論:(1)當直線l垂直于x軸時,根據拋物線的對稱性,有∠AED=∠BED;(2)當直線l與x軸不垂直時,利用直線的斜率進行轉換即得;
(III)假設存在滿足條件的直線,根據垂徑定理得性質可知,要使弦長為定值,則只要圓心到直線的距離為定值即可.
解答:解:(Ⅰ)設M(x,y),P(0,y'),Q(x',0)(x'>0)∵,
且(3,y')•(x,y-y')=0…(2分)
.…(3分)∴y2=4x(x>0)…(4分)
∴動點M的軌跡C是以O(0,0)為頂點,以(1,0)為焦點的拋物線(除去原點).…(5分)
(Ⅱ):(1)當直線l垂直于x軸時,根據拋物線的對稱性,有∠AED=∠BED;…(6分)
(2)當直線l與x軸不垂直時,依題意,可設直線l的方程為y=k(x-m)(k≠0,m>0),A(x1,y1),B(x2,y2),則A,B兩點的坐標滿足方程組
消去x并整理,得ky2-4y-4km=0∴…(7分)
設直線AE和BE的斜率分別為k1、k2,則k1+k2=====…(9分)
∴tan∠AED+tan(180°-∠BED)=0∴tan∠AED=tan∠BED∵,
∴∠AED=∠BED.綜合(1)、(2)可知∠AED=∠BED.…(10分)
(Ⅲ)假設存在滿足條件的直線l',其方程為x=a,AD的中點為O',l'與AD為直徑的圓相交于點F、G,F(xiàn)G的中點為H,則O'H⊥FG,O'點的坐標為
=,
∴|FH|2=|O'F|2-|O'H|2==(a-m+1)x1+a(m-a)…(12分)
∴|FG|2=(2|FH|)2=4[(a-m+1)x1+a(m-a)]
令a-m+1=0,得a=m-1
此時,|FG|2=4(m-1)
∴當m-1>0,即m>1時,(定值)
∴當m>1時,滿足條件的直線l'存在,其方程為x=m-1;當0<m≤1時,滿足條件的直線l'不存在.…(14分)
點評:本題以向量得數量積得坐標表示為載體考查了圓錐曲線得求解及直線與圓、圓錐曲線的位置關系得求解.屬于綜合試題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點H(-3,0),點P在y軸上,點Q在x軸正半軸上,點M在直線PQ上,且滿足
HP
PM
=0
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過點(1,0)作直線L交軌跡C于A、B兩點,已知
AF
=2
FB
,求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點H(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

①當點P在y軸上移動時,求點M的軌跡C;
②過點R(2,1)作直線l與軌跡C交于A,B兩點,使得R恰好為弦AB的中點,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點H(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點D(m,0)(m>0)作直線l交軌跡C于A、B兩點,E是D點關于坐標原點O的對稱點,試問∠AED=∠BED嗎?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•和平區(qū)三模)已知點H(-3,0),點P在y軸上,點Q在x軸正半軸上,點M在直線PQ上,且
HP
PM
=0
,又
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C的方程;
(2)若直線l:y=k(x-1)(k>2)與軌跡C交于A、B兩點,AB中點N到直線3x+4y+m=0(m>-3)的距離為
1
5
,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

同步練習冊答案