已知函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/54/b/1px9r3.png" style="vertical-align:middle;" />的偶函數(shù).當(dāng)時(shí),若關(guān)于的方程有且只有7個(gè)不同實(shí)數(shù)根,則的值是.

解析試題分析:首先研究函數(shù)的性質(zhì),上是減函數(shù),在上是增函數(shù),時(shí),取極大值1,時(shí),取極小值,當(dāng)時(shí),,因此方程有7個(gè)根,則方程必有兩個(gè)根,其中,,

由此可得,所以.
考點(diǎn):偶函數(shù)的性質(zhì),曲線的交點(diǎn)與方程的根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(a是常數(shù),a∈R)
(1)當(dāng)a=1時(shí)求不等式的解集.
(2)如果函數(shù)恰有兩個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),曲線在點(diǎn)處切線方程為.
(1)求的值;
(2)討論的單調(diào)性,并求的極小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)若,求x的范圍;
(2)求的最大值以及此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓(a>b>0)的左焦為F,右頂點(diǎn)為A,上頂點(diǎn)為B,O為坐標(biāo)原點(diǎn),M為橢圓上任意一點(diǎn),過F,B,A三點(diǎn)的圓的圓心為(p,q).
(1).當(dāng)p+q≤0時(shí),求橢圓的離心率的取值范圍;
(2).若D(b+1,0),在(1)的條件下,當(dāng)橢圓的離心率最小時(shí),的最小值為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),判斷的單調(diào)性,并用定義證明.
(2)若對(duì)任意,不等式 恒成立,求的取值范圍;
(3)討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

判斷下列對(duì)應(yīng)是否是從集合A到集合B的函數(shù).
(1) A=B=N*,對(duì)應(yīng)法則f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,對(duì)應(yīng)法則f:x→y,這里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],對(duì)應(yīng)法則f:x→y,這里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,對(duì)應(yīng)法則:對(duì)任意(x,y)∈A,(x,y)→z=x+3y,z∈B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2+bx(a、b為常數(shù),且a≠0)滿足條件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在實(shí)數(shù)m、n(m<n),使f(x)定義域和值域分別為[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案