已知橢圓的一個(gè)頂點(diǎn)為A(0,-l),焦點(diǎn)在軸上,若右焦點(diǎn)到直線 的距離為3。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓與直線相交于不同的兩點(diǎn)M、N,當(dāng)時(shí),求的取值范圍。

解:(1)依題意可設(shè)橢圓方程為,則右焦點(diǎn)F(,0)

由題設(shè),解得

故所求橢圓的方程為                                

(2)設(shè)P為弦MN的中點(diǎn),由

                 

由于直線與橢圓有兩個(gè)交點(diǎn),∴,即① 

,從而

                                 

,∴

,即②                   

把②代入①得,解得

由②得,解得

故所求的取值范圍是(,2)   

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為(-2,0),焦點(diǎn)在x軸上,且離心率為
2
2

(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)斜率為1的直線l與橢圓交于A、B兩點(diǎn),O為原點(diǎn),當(dāng)△AOB的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,離心率為
6
3

(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為B(0,-1),焦點(diǎn)在x軸上,若右焦點(diǎn)F到直線x-y+2
2
=0的距離為3.  
(1)求橢圓的方程;
(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)M、N,直線l的斜率為k(k≠0),當(dāng)|BM|=|BN|時(shí),求直線l縱截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,且右焦點(diǎn)到直線x-y+2
2
=0的距離為3,一條斜率為k(k≠0)的直線l與該橢圓交于不同的兩點(diǎn)M、N,且滿足|
AM
|=|
AN
|
,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案