函數(shù)f(x)=x2-2ax+a在區(qū)間(-∞,1)上有最小值,則函數(shù)g(x)=在區(qū)間(1,+∞)上一定
A.有最小值
B.有最大值
C.是減函數(shù)
D.是增函數(shù)
解析:函數(shù)f(x)=x2-2ax+a的對(duì)稱軸是直線x=a,由于函數(shù)f(x)在開(kāi)區(qū)間(-∞,1)上有最小值,所以直線x=a位于區(qū)間(-∞,1)內(nèi),即a<1.g(x)==x+-2a,下面用定義法判斷函數(shù)g(x)在區(qū)間(1,+∞)上的單調(diào)性.設(shè)1<x1<x2,則g(x1)-g(x2)=(x1+-2a)-(x2+-2a)=(x1-x2)+() 。(x1-x2)(1-)=(x1-x2). ∵1<x1<x2, ∴x1-x2<0,x1x2>1>0. 又∵a<1,∴x1x2>a. ∴x1x2-a>0. ∴g(x1)-g(x2)<0.∴g(x1)<g(x2). ∴函數(shù)g(x)在區(qū)間(1,+∞)上是增函數(shù),函數(shù)g(x)在區(qū)間(1,+∞)上沒(méi)有最值,故選D. |
定義法判斷函數(shù)f(x)的單調(diào)性步驟是:①在所給區(qū)間上任取兩個(gè)變量x1、x2;②比較f(x1)與f(x2)的大小,通常利用作差比較它們的大小,先作差,后將差變形,變形的手段是通分、分解因式,變形的結(jié)果常是完全平方加上一個(gè)常數(shù)或因式的積(商)等;③由②中差的符號(hào)確定函數(shù)的單調(diào)性.注意:函數(shù)f(x)在開(kāi)區(qū)間D上是單調(diào)函數(shù),則f(x)在開(kāi)區(qū)間D上沒(méi)有最大值,也沒(méi)有最小值. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=x2-2-1(-3≤x≤3).
(1)證明:f(x)是偶函數(shù);
(2)指出函數(shù)f(x)的單調(diào)區(qū)間,并說(shuō)明在各個(gè)單調(diào)區(qū)間上f(x)是增函數(shù)還是減函數(shù);
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)自變量取值區(qū)間A,若其值域區(qū)間也為A,則稱區(qū)間A為f(x)的保值區(qū)間.
(1)求函數(shù)f(x)=x2形如[n,+∞)(n∈R)的保值區(qū)間;
(2)g(x)=x-ln(x+m)的保值區(qū)間是[2,+∞),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海交大附中高三數(shù)學(xué)理總復(fù)習(xí)二函數(shù)的圖像與性質(zhì)練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實(shí)數(shù)a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江高三上期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
對(duì)實(shí)數(shù)a和b,定義運(yùn)算“?”:a?b=,設(shè)函數(shù)f(x)=(x2-2)?(x-x2),x∈R,若函數(shù)y=f(x)-c的圖象與x軸恰有兩個(gè)公共點(diǎn),則實(shí)數(shù)c的取值范圍是
A.(-∞,-2]∪ B.
C. D.(-∞,-2]∪
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com