奇函數(shù)y=f(x)(x≠0),當(dāng)x∈(0,+∞)時(shí),f(x)=x-1,則函數(shù)f(x-1)的圖象為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:詔安一中2006-2007學(xué)年度上學(xué)期第三次月考、高三數(shù)學(xué)試題(文科) 題型:022
如果奇函數(shù)y=f(x)(x≠0)在x∈(0,+∞)時(shí),f(x)=x-1,則f(x)在整個(gè)定義域上的解析式為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省吉林市一中2010屆高三第四次月考、文科數(shù)學(xué)試卷 題型:013
對(duì)任意的實(shí)數(shù)a、b,記max{a,b}=.若F(x)=max{f(x),g(x)}(x∈R),其中奇函數(shù)y=f(x)在x=l時(shí)有極小值-2,y=g(x)是正比例函數(shù),函數(shù)y=f(x)(x≥0)與函數(shù)y=g(x)的圖象如圖所示.則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是
y=F(x)為奇函數(shù)
y=F(x)有極大值F(-1)且有極小值F(0)
y=F(x)的最小值為-2且最大值為2
y=F(x)在(-3,0)上為增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:黑龍江省哈一中2012屆高三上學(xué)期期中考試數(shù)學(xué)文科試題(人教版) 人教版 題型:013
對(duì)任意的實(shí)數(shù)a,b,記max{a,b}=若F(x)=max{f(x),g(x)}(x∈R),其中奇函數(shù)y=f(x)在x=1時(shí)有極小值-2,y=g(x)是正比例函數(shù),函數(shù)y=f(x)(x≥0)與函數(shù)y=g(x)的圖象如圖所示則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是
A.y=F(x)為奇函數(shù)
B.y=F(x)有極大值F(1)且有極小值F(-1)
C.y=F(x)的最小值為-2且最大值為2
D.y=F(x)在(-3,0)上不是單調(diào)函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省詔安一中2006-2007學(xué)年度上學(xué)期第三次月考高三數(shù)學(xué)試題(文) 題型:022
如果奇函數(shù)y=f(x)(x≠0)在時(shí),f(x)=x-1,則f(x)在整個(gè)定義域上的解析式為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知奇函數(shù)y=f(x)在區(qū)間(-∞,0]上的解析式為f(x)=x2+x,則切點(diǎn)橫坐標(biāo)為1的切線方程是 ( )
A.x+y+1=0 B.x+y-1=0
C.3x-y-1=0 D.3x-y+1=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com