在[-2,2]上的最大值是              

 

【答案】

3

【解析】,

.所以最大值為3.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),橢圓C′的對稱軸是坐標(biāo)軸,拋物線C在x軸上的焦點(diǎn)恰好是橢圓C′的焦點(diǎn)
(Ⅰ)若拋物線C和橢圓C′都經(jīng)過點(diǎn)M(1,2),求拋物線C和橢圓C′的方程;
(Ⅱ)已知?jiǎng)又本l過點(diǎn)p(3,0),交拋物線C于A,B兩點(diǎn),直線l′:x=2被以AP為直徑的圓截得的弦長為定值,求拋物線C的方程;
(Ⅲ)在(Ⅱ)的條件下,分別過A,B的拋物線C的兩條切線的交點(diǎn)E的軌跡為D,直線AB與軌跡D交于點(diǎn)F,求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1在x=-2與x=1處有極值.
(1)求函數(shù)f(x)的解析式;    
(2)求f(x)在[-3,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市邛崍市高三(上)12月統(tǒng)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個(gè)函數(shù)m(x),用分法T:p=x<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由.(參考公式:…+f(xn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省煙臺市高三(上)第一學(xué)段檢測(期中)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個(gè)函數(shù)m(x),用分法T:p=x<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由.(參考公式:…+f(xn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市姜堰市高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個(gè)函數(shù)m(x),用分法T:p=x<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由.(參考公式:…+f(xn))

查看答案和解析>>

同步練習(xí)冊答案