17.在等差數(shù)列{an}中,a2=3,a2a3=2a4+1.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

分析 (1)利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出{an}的通項(xiàng)公式.
(2)由a1=1,an=2n-1,能求出數(shù)列{an}的前n項(xiàng)和.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
∵在等差數(shù)列{an}中,a2=3,a2a3=2a4+1.
∴$\left\{\begin{array}{l}{{a}_{1}+d=3}\\{3({a}_{1}+2d)=2({a}_{1}+3d)+1}\end{array}\right.$,
解得a1=1,d=2,
∴{an}的通項(xiàng)公式an=1+(n-1)×2=2n-1.
(2)∵a1=1,d=2,an=2n-1,
∴數(shù)列{an}的前n項(xiàng)和:
Sn=$\frac{n(1+2n-1)}{2}={n}^{2}$.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若α為第三象限的角,則$\frac{\sqrt{1+sin2α}}{sinα+cosα}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.算法流程圖如圖所示,則輸出的結(jié)果是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.現(xiàn)有7名學(xué)科競賽優(yōu)勝者,其中語文學(xué)科是A1,A2,數(shù)學(xué)學(xué)科是B1,B2,英語學(xué)科是C1,C2,物理學(xué)科是D1,從競賽優(yōu)勝者中選出3名組成一個(gè)代表隊(duì),要求每個(gè)學(xué)科至多選出1名.
(1)求B1被選中的概率;
(2)求代表隊(duì)中有物理優(yōu)勝者的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.不等式x2>0的解集為(  )
A.{x|x>0}B.{x|x<0}C.{x|x≠0}D.{x|x∈R}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)全集U=R,集合M={x||x-$\frac{1}{2}$|$≤\frac{5}{2}$},P={x|-1≤x≤4},則(∁UM)∩P等于( 。
A.{x|-4≤x≤-2}B.{x|-1≤x≤3}C.{x|3<x≤4}D.{x|3≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,過其左焦點(diǎn)F作斜率為$\frac{1}{2}$的直線與雙曲線的兩條漸近線的交點(diǎn)分別為A、B,若$\overrightarrow{FA}=\frac{1}{2}\overrightarrow{AB}$,則雙曲線的兩條漸近線方程為( 。
A.$y=±\frac{1}{3}x$B.$y=±(\sqrt{2}-1)x$C.y=±xD.$y=±\frac{1}{4}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在復(fù)數(shù)集C={a+bi|a,b∈R}中的兩個(gè)數(shù)2+bi與a-3i相等,則實(shí)數(shù)a,b的值分別為( 。
A.2,3B.2,-3C.-2,3D.-2,-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,某段鐵路AB長為80公里,BC⊥AB,且BC=10公里,為將貨物從A地運(yùn)往C地,現(xiàn)在AB上的距點(diǎn)B為x的點(diǎn)M處修一公路至點(diǎn)C.已知鐵路運(yùn)費(fèi)為每公里2元,公路運(yùn)費(fèi)為每公里4元.
(1)將總運(yùn)費(fèi)y表示為x的函數(shù).
(2)如何選點(diǎn)M才使總運(yùn)費(fèi)最?

查看答案和解析>>

同步練習(xí)冊答案