己知點(diǎn)E、F分別在正方體ABCD-A1B2C3D4的棱BB1、CC1上,且B1E=2EB,CF=2FC1,則面AEF與面ABC所成的二面角的正切值等于________.

答案:
解析:


提示:

本題應(yīng)先找出兩平面的交線(xiàn),進(jìn)而找出或做出二面角的平面角是解決此問(wèn)題的關(guān)鍵,延長(zhǎng)EF必與BC相交,交點(diǎn)為P,則AP為面AEF與面ABC的交線(xiàn).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:山東省鄆城一中2012屆高三上學(xué)期寒假作業(yè)數(shù)學(xué)理科試卷(3) 題型:022

己知點(diǎn)E、F分別在正方體ABCD-A1B2C3D4的棱BB1、CC1上,且B1E=2EB,CF=2FC1,則面AEF與面ABC所成的二面角的正切值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(全國(guó)卷II)解析版 題型:填空題

 己知點(diǎn)E、F分別在正方體ABCD-A1B2C3D4的棱BB1 、CC1上,且B1E=2EB, CF=2FC1,則面AEF與面ABC所成的二面角的正切值等于        .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:填空題

己知點(diǎn)E、F分別在正方體ABCD-A1B2C3D4的棱BB1、CC1上,且B1E=2EB,CF=2FC1,則面AEF與面ABC所成的二面角的正切值等于(    )。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知點(diǎn)E、F分別在正方體ABCD-A1B2C3D4的棱BB1 、CC1上,且B1E=2EB, CF=2FC1,則面AEF與面ABC所成的二面角的正切值等于        .

查看答案和解析>>

同步練習(xí)冊(cè)答案