.如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.
證法一:(1)
取CE的中點P,連接FP、BP,
∵F為CD的中點,
∴FP∥DE,且FP=DE.
又AB∥DE,且AB=DE,
∴AB∥FP,且AB=FP,
∴四邊形ABPF為平行四邊形,∴AF∥BP.
又∵AF⊄平面BCE,BP⊂平面BCE,
∴AF∥平面BCE.
(2)∵△ACD為正三角形,∴AF⊥CD.
∵AB⊥平面ACD,DE∥AB,∴DE⊥平面ACD,
又AF⊂平面ACD,∴DE⊥AF.
又AF⊥CD,CD∩DE=D,∴AF⊥平面CDE.
又BP∥AF,∴BP⊥平面CDE.
又∵BP⊂平面BCE,∴平面BCE⊥平面CDE.
證法二:設(shè)AD=DE=2AB=2a,建立如圖所示的坐標系A-xyz,則A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a).
∵F為CD的中點,∴F(a,a,0).
又AF∥平面BCE,∴平面BCE⊥平面CDE.
科目:高中數(shù)學 來源: 題型:
如圖,已知正三棱柱ABC-A1B1C1的底面邊長為2cm,高為5cm,則一質(zhì)點自點A出發(fā),沿著三棱柱的側(cè)面繞行兩周到達點A1的最短路線的長為________cm.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,正方體ABCD-A1B1C1D1的棱長為1,E、F分別是棱BC、DD1上的點,如果B1E⊥平面ABF,則CE與DF的和的值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
在三棱錐P-ABC中,△PAC和△PBC是邊長為的等邊三角形,AB=2,O是AB的中點.
(1)在棱PA上求一點M,使得OM∥平面PBC;
(2)求證:平面PAB⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為BC的中點,點P在線段D1E上,點P到直線CC1的距離的最小值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com