判斷f(x)=
1x
在(-∞,0)∪(0,+∞)上的單調(diào)性.
分析:由f(-1)<f(1),f(-2)>f(-1)可知,f(x)在(-∞,0)∪(0,+∞)上不具有單調(diào)性.
解答:解:∵-1<1,f(-1)=-1<f(1)=1,
∴f(x)在(-∞,0)∪(0,+∞)上不是減函數(shù).
∵-2<-1,f(-2)=-
1
2
>f(-1)=-1,
∴f(x)在(-∞,0)∪(0,+∞)上不是增函數(shù).
∴f(x)在(-∞,0)∪(0,+∞)上不具有單調(diào)性.
點(diǎn)評(píng):本題考查判斷函數(shù)的單調(diào)性的方法,通過(guò)舉反例來(lái)判斷某個(gè)結(jié)論不成立,是一種簡(jiǎn)單有效的辦法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)判斷函數(shù)f(x)=x2+
1
x
在(1,+∞)上的單調(diào)性,并用定義法加以證明;
(2)若函數(shù)f(x)=x2+
a
x
在區(qū)間(1,+∞)上的單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列判斷正確的是
(把正確的序號(hào)都填上).
①函數(shù)y=|x-1|與y=
x-1,x>1
1-x,x<1
是同一函數(shù);
②若函數(shù)f(x)在區(qū)間(-∞,0)上遞增,在區(qū)間[0,+∞)上也遞增,則函數(shù)f(x)必在R上遞增;
③對(duì)定義在R上的函數(shù)f(x),若f(2)≠f(-2),則函數(shù)f(x)必不是偶函數(shù);
④函數(shù)f(x)=
1
x
在(-∞,0)∪(0,+∞)上單調(diào)遞減;
⑤若x1是函數(shù)f(x)的零點(diǎn),且m<x1<n,那么f(m)•f(n)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷f(x)=
1x
在(0,+∞)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

判斷f(x)=
1
x
在(0,+∞)的單調(diào)性并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案