設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).若x=-1為函數(shù)f(x)ex的一個極值點,則下列圖象不可能為y=f(x)的圖象是
D
解析試題分析:由y=f(x)ex=ex(ax2+bx+c)⇒y'=f'(x)ex+exf(x)=ex[ax2+(b+2a)x+b+c],
由x=-1為函數(shù)f(x)ex的一個極值點可得,-1是方程ax2+(b+2a)x+b+c=0的一個根,
所以有a-(b+2a)+b+c=0⇒c=a.
法一:所以函數(shù)f(x)=ax2+bx+a,對稱軸為x=-,且f(-1)=2a-b,f(0)=a.
對于A,由圖得a>0,f(0)>0,f(-1)=0符合要求,
對于B,由圖得a<0,f(0)<0,f(-1)=0不矛盾,
對于C,由圖得a<0,f(0)<0,x=->0得到b>0,f(-1)<0不矛盾,
對于D,由圖得a>0,f(0)>0,x=-<-1得到b>2a,f(-1)<0于圖中f(-1)>0矛盾,D不對.
法二:得到函數(shù)f(x)=ax2+bx+a,由此得函數(shù)相應(yīng)方程的兩根之積為1,對照四個選項發(fā)現(xiàn),D不成立,故選 D.
考點:本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的極值,二次函數(shù)圖象和性質(zhì)。
點評:易錯題,本題要求“不可能”為的圖象。研究函數(shù)的單調(diào)性、極值是導(dǎo)數(shù)的基本應(yīng)用,方法明確,步驟規(guī)范。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com