已知
(Ⅰ)求的最大值及取得最大值時x的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若,,求△ABC的面積.

(Ⅰ)時,函數(shù)取得最大值2.(Ⅱ).

解析試題分析:(Ⅰ)將展開化一,化為的形式,然后利用正弦函數(shù)的最大值,即可求得函數(shù)取得最大值.(Ⅱ)由(Ⅰ)得,即,這是一個特殊值,可求得.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/12/d/q33bk1.png" style="vertical-align:middle;" />,根據(jù)正弦定理,得.這樣得到一個關(guān)于的方程,再用余弦定理列一個關(guān)于的方程,解方程組,便可得的值,從而可求出△ABC的面積.
試題解析:(Ⅰ)
. 2分
當(dāng),即,時,函數(shù)取得最大值2. 4分
(Ⅱ)由,得,
,∴,解得. 6分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/12/d/q33bk1.png" style="vertical-align:middle;" />,根據(jù)正弦定理,得, 8分
由余弦定理,有,
,
解得,, 10分
故△ABC的面積. 12分
考點(diǎn):1、三角恒等變換;2、三角函數(shù)的最值;3、正弦定理與余弦定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且.
(1)求
(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,其中為銳角,且
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在銳角中,分別為角的對邊,且.
(1)求角A的大;
(2)若BC邊上高為1,求面積的最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為坐標(biāo)原點(diǎn),,.
(Ⅰ)若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/08/d/1dzk83.png" style="vertical-align:middle;" />,求的單調(diào)遞增區(qū)間;
(Ⅱ)若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/85/f/zomom.png" style="vertical-align:middle;" />,值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/32/4/pv25l.png" style="vertical-align:middle;" />,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=.
(1)當(dāng)時,求的值域;
(2)若的內(nèi)角的對邊分別為,且滿足,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),將其圖象向左移個單位,并向上移個單位,得到函數(shù)的圖象.
(1)求實(shí)數(shù)的值;
(2)設(shè)函數(shù),求函數(shù)的單調(diào)遞增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且
(Ⅰ)求的值.
(Ⅱ)求的值.

查看答案和解析>>

同步練習(xí)冊答案