函數(shù)f(x)的導函數(shù)為f'(x),若對于定義域內任意x1、x2(x1≠x2),有恒成立,則稱f(x)為恒均變函數(shù).給出下列函數(shù):①f(x)=2x+3;②f(x)=x2﹣2x+3;③;④f(x)=ex;⑤f(x)=lnx.其中為恒均變函數(shù)的序號是(    ). (寫出所有滿足條件的函數(shù)的序號)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)的定義域為[-2,+∞),部分對應值如下表,
 x -2    0 4
f(x)   1 -1 1
f′(x)為f(x)的導函數(shù),函數(shù)y=f′(x)的圖象如圖所示:若兩正數(shù)a,b滿足f(2a+b)<1,則
b+3
a+3
的取值范圍是( 。
A、(
6
7
4
3
)
B、(
3
5
,
7
3
)
C、(
2
3
,
6
5
)
D、(-
1
3
,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4、已知函數(shù)f(x)的導函數(shù)的圖象如圖所示,給出下列四個結論:
①函數(shù)f(x)在區(qū)間(-3,1)內單調遞減;
②函數(shù)f(x)在區(qū)間(1,7)內單調遞減;
③當x=-3時,函數(shù)f(x)有極大值;
④當x=7時,函數(shù)f(x)有極小值.
則其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•中山一模)已知函數(shù)f(x)=
13
x3-ax+b
,其中實數(shù)a,b是常數(shù).
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”發(fā)生的概率;
(Ⅱ)若f(x)是R上的奇函數(shù),g(a)是f(x)在區(qū)間[-1,1]上的最小值,求當|a|≥1時g(a)的解析式;
(Ⅲ)記y=f(x)的導函數(shù)為f′(x),則當a=1時,對任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)=f′(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•合肥模擬)已知向量
a
=(sinx,cosx),
b
=(cosx,
3
cosx)
,f(x)=
a
b
-
3
2
,下面關于函數(shù)f(x)的導函數(shù)f'(x)說法中錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:中山一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3-ax+b
,其中實數(shù)a,b是常數(shù).
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”發(fā)生的概率;
(Ⅱ)若f(x)是R上的奇函數(shù),g(a)是f(x)在區(qū)間[-1,1]上的最小值,求當|a|≥1時g(a)的解析式;
(Ⅲ)記y=f(x)的導函數(shù)為f′(x),則當a=1時,對任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)=f′(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案