如圖,l1、l2、l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點(diǎn)分別在l1、l2、l3上,則△ABC的邊長(zhǎng)是( )

A.
B.
C.
D.
【答案】分析:由題意可知,正三角形ABC的三頂點(diǎn)分別在l1、l2、l3上,說(shuō)明三邊長(zhǎng)度相等,需要用解析法來(lái)解,即建立適當(dāng)?shù)闹苯亲鴺?biāo)系,設(shè)點(diǎn)的坐標(biāo),利用邊長(zhǎng)相等來(lái)逐一驗(yàn)證即可得到正確答案.
解答:解:過(guò)點(diǎn)C作l2的垂線l4,以l2、l4為x軸、y軸建立平面直角坐標(biāo)系.
設(shè)A(a,1)、B(b,0)、C(0,-2),由AB=BC=AC知
(a-b)2+1=b2+4=a2+9=邊長(zhǎng)2,檢驗(yàn)A:(a-b)2+1=b2+4=a2+9=12,無(wú)解;
檢驗(yàn)B:(a-b)2+1=b2+4=a2+9=,無(wú)解;
檢驗(yàn)D:(a-b)2+1=b2+4=a2+9=,正確.
故選D.
點(diǎn)評(píng):本題是把關(guān)題.在基礎(chǔ)中考能力,在綜合中、在應(yīng)用中、在新型題中考能力全占全了.是一道精彩的好題.區(qū)分度較。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2
(Ⅰ)分別用不等式組表示W(wǎng)1和W2
(Ⅱ)若區(qū)域W中的動(dòng)點(diǎn)P(x,y)到l1,l2的距離之積等于d2,求點(diǎn)P的軌跡C的方程;
(Ⅲ)設(shè)不過(guò)原點(diǎn)O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點(diǎn),且與l1,l2分別交于M3,M4兩點(diǎn).求證△OM1M2的重心與△OM3M4的重心重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=3x2-3x直線l1:x=2和l2:y=3tx,其中t為常數(shù)且0<<1.直線l2與函數(shù)f(x)的圖象以及直線l1、l2與函數(shù)f(x)的圖象圍成的封閉圖形如圖中陰影所示,設(shè)這兩個(gè)陰影區(qū)域的面積之和為S(t).
(1)求函數(shù)S(t)的解析式;
(2)若函數(shù)L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說(shuō)明理由;
(3)定義函數(shù)h(x)=S(x),x∈R若過(guò)點(diǎn)A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考總復(fù)習(xí)全解 數(shù)學(xué) 一輪復(fù)習(xí)·必修課程。ㄈ私虒(shí)驗(yàn)版) B版 人教實(shí)驗(yàn)版 B版 題型:047

如圖,l1l2ll1=A,ll2=B,求證:直線l、l1、l2共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考總復(fù)習(xí)全解 數(shù)學(xué) 一輪復(fù)習(xí)·必修課程 (人教實(shí)驗(yàn)版) B版 人教實(shí)驗(yàn)版 B版 題型:047

如果三條平行線都與一條直線相交,那么這四條直線共面.

分析:可先由已知條件分別確定平面,然后再證它們是重合的.此題可用歸一法證明.

已知:如圖,l1l2l3ll1=A,ll2=B,ll3=C.

求證:l1、l2l3、l四條直線共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試江西卷理數(shù) 題型:013

如圖,半徑為1的半圓O與等邊三角形ABC夾在兩平行線,l1,l2之間ll1,l與半圓相交于F,G兩點(diǎn),與三角形ABC兩邊相交于E,D兩點(diǎn),設(shè)弧的長(zhǎng)為x(0<x<π),y=EB+BC+CD,若ll1平行移動(dòng)到l2,則函數(shù)y=f(x)的圖像大致是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案