14.已知等比數(shù)列{an}中,a1=4,a5a7=4a82,則a3=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

分析 由已知求出等比數(shù)列的公比,再由等比數(shù)列的通項(xiàng)公式求得a3

解答 解:在等比數(shù)列{an}中,由a5a7=4a82,
得${{a}_{6}}^{2}={4{a}_{8}}^{2}$,即${q}^{4}=\frac{{{a}_{8}}^{2}}{{{a}_{6}}^{2}}=\frac{1}{4}$,
∴${q}^{2}=\frac{1}{2}$,又a1=4,
∴${a}_{3}={a}_{1}{q}^{2}=2$.
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若定義在R上的不恒為零的函數(shù)f(x)滿足:?x,y∈R都有f2(x)-f2(y)=f(x+y)f(x-y),則稱函數(shù)f(x)為“平方差函數(shù)”,下列命題:
(1)若f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{0,x<0}\end{array}\right.$,則f(x)為“平方差函數(shù)”;
(2)若f(x)=kx(k>0),則f(x)為“平方差函數(shù)”;
(3)若f(x)為“平方差函數(shù)”,則f(x)為奇函數(shù);
(4)若f(x)為“平方差函數(shù)”,則f(x)為增函數(shù).
其中正確命題的序號(hào)是(2)(3)(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其長(zhǎng)軸長(zhǎng)是其短軸長(zhǎng)的2倍,橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為4.
(Ⅰ)求橢圓C的方程.
(Ⅱ)設(shè)曲線C的上、下頂點(diǎn)分別為A、B,點(diǎn)P在曲線C上,且異于點(diǎn)A、B,直線AP,BP與直線l:y=-2分別交于點(diǎn)M,N.
(1)設(shè)直線AP,BP的斜率分別為k1,k2,求證:k1k2為定值;
(2)求線段MN長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.復(fù)數(shù)Z=(m2+3m-4)+(m2-10m+9)i(m∈R),
(1)當(dāng)m=0時(shí),求復(fù)數(shù)Z的模;
(2)當(dāng)實(shí)數(shù) m為何值時(shí)復(fù)數(shù)Z為純虛數(shù);
(3)當(dāng)實(shí)數(shù) m為何值時(shí)復(fù)數(shù)Z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取5次,記錄如下:
8889929091
8488968993
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說明理由.(用樣本數(shù)據(jù)特征來說明.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知m∈R,i為虛數(shù)單位,則“m=1”是“復(fù)數(shù)z=m2-1+(m+1)i為純虛數(shù)”的(  )
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a,b為實(shí)數(shù),設(shè)復(fù)數(shù)z=a+bi滿足$\frac{i}{z}$=2-i(i是虛數(shù)單位),則a-b=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=$\frac{m+ln(2x+1)}{2x+1}$.(m∈R)
(1)若曲線y=f(x)在x=0處的切線與直線x-2y-2016=0垂直,求函數(shù)f(x)的極值;
(2)若關(guān)于t的函數(shù)F(t)=lnt+t2-3t-$\frac{1}{2016}{(2x+1)^2}$f′(x)在$x∈[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$時(shí)恒有3個(gè)不同的零點(diǎn),試求實(shí)數(shù)m的范圍.(f′(x)為f(x)的導(dǎo)函數(shù),e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等比數(shù)列{an}中,若an>0,且a3,a7是x2-32x+64=0的兩根,則log2a1+log2a2+log2a3+…+log2a9=( 。
A.27B.36C.18D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案