為加強環(huán)保建設(shè),提高社會效益和經(jīng)濟效益,某市計劃用若干年時間更換一萬輛燃油型公交車,每更換一輛新車,則淘汰一輛舊車,替換車為電力型和混合動力型車,今年初投入了電力型公交車128輛,混合動力型公交車400輛;計劃以后電力型車每年的投入量比上一年增加50%,混合動車型車每年比上一年多投入a輛.
(1)求經(jīng)過n年,該市被更換的公交車總數(shù)S(n);
(2)若該市計劃7年內(nèi)完成全部更換,求a的最小值.
【答案】分析:(1)設(shè)an,bn分別為第n年投入的電力型公交車,混合動力型公交車的數(shù)量,依題意,{an}是首項為128,公比為1+50%=的等比數(shù)列,{bn}是首項為400,公差為a的等差數(shù)列,由此可求出經(jīng)過n年,該市被更換的公交車總數(shù)S(n).
(2)若計劃7年內(nèi)完成全部更換,所以S(7)≥10000所以.由此能求出a的最小值.
解答:解:(1)設(shè)an,bn分別為第n年投入的電力型公交車,混合動力型公交車的數(shù)量,
依題意,{an}是首項為128,公比為1+50%=的等比數(shù)列,{bn}是首項為400,公差為a的等差數(shù)列,{an}的前n項和{bn}的前n項和
所以經(jīng)過n年,該市更換的公交車總數(shù)為:(7分)
(2)若計劃7年內(nèi)完成全部更換,
所以S(7)≥10000
所以
即21a≥3082,所以
又a∈N*,所以a的最小值為147.(13分)
點評:本題考查數(shù)列的綜合應(yīng)用,解題時要認(rèn)真審題,挖掘數(shù)量間的相互關(guān)系,合理地建立方程,仔細求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為加強環(huán)保建設(shè),提高社會效益和經(jīng)濟效益,某市計劃用若干年時間更換一萬輛燃油型公交車,每更換一輛新車,則淘汰一輛舊車,替換車為電力型和混合動力型車,今年初投入了電力型公交車128輛,混合動力型公交車400輛;計劃以后電力型車每年的投入量比上一年增加50%,混合動車型車每年比上一年多投入a輛.
(1)求經(jīng)過n年,該市被更換的公交車總數(shù)S(n);
(2)若該市計劃7年內(nèi)完成全部更換,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省安慶市潛山中學(xué)彭嶺分校高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

為加強環(huán)保建設(shè),提高社會效益和經(jīng)濟效益,某市計劃用若干年時間更換一萬輛燃油型公交車,每更換一輛新車,則淘汰一輛舊車,替換車為電力型和混合動力型車,今年初投入了電力型公交車128輛,混合動力型公交車400輛;計劃以后電力型車每年的投入量比上一年增加50%,混合動車型車每年比上一年多投入a輛.
(1)求經(jīng)過n年,該市被更換的公交車總數(shù)S(n);
(2)若該市計劃7年內(nèi)完成全部更換,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省廣州市天河區(qū)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

為加強環(huán)保建設(shè),提高社會效益和經(jīng)濟效益,某市計劃用若干年時間更換一萬輛燃油型公交車,每更換一輛新車,則淘汰一輛舊車,替換車為電力型和混合動力型車,今年初投入了電力型公交車128輛,混合動力型公交車400輛;計劃以后電力型車每年的投入量比上一年增加50%,混合動車型車每年比上一年多投入a輛.
(1)求經(jīng)過n年,該市被更換的公交車總數(shù)S(n);
(2)若該市計劃7年內(nèi)完成全部更換,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖南省六校高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

為加強環(huán)保建設(shè),提高社會效益和經(jīng)濟效益,某市計劃用若干年時間更換一萬輛燃油型公交車,每更換一輛新車,則淘汰一輛舊車,替換車為電力型和混合動力型車,今年初投入了電力型公交車128輛,混合動力型公交車400輛;計劃以后電力型車每年的投入量比上一年增加50%,混合動車型車每年比上一年多投入a輛.
(1)求經(jīng)過n年,該市被更換的公交車總數(shù)S(n);
(2)若該市計劃7年內(nèi)完成全部更換,求a的最小值.

查看答案和解析>>

同步練習(xí)冊答案