【答案】
分析:(I)取AC中點(diǎn)F,連接OF、FB,可證四邊形BDOF是平行四邊形,再利用直線與平面平行的判定定理進(jìn)行證明,即可解決問題;
(II)以C為原點(diǎn),分別以CA、CB為x、y軸,以過點(diǎn)C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系,寫出各點(diǎn)的坐標(biāo),
設(shè)面ODM的法向量
,則直線CD和平面ODM所成角為θ,從而求解.
(III)取EM中點(diǎn)N,連接ON、CM,因?yàn)锳C=BC,M為AB中點(diǎn),可得CM⊥AB,證明ON∥CM即可求解.
解答:解:(I)證明:取AC中點(diǎn)F,連接OF、FB(1分)
∵F是AC中點(diǎn),O為CE中點(diǎn),∴OF∥EA且OF=
,又BD∥AE且BD=
∴F∥DB,OF=DB
∴四邊形BDOF是平行四邊形(2分)
∴OD∥FB(3分)
又∵FB?平面MEG,OD?平面MEG
∴OD面ABC.(4分)
(II)∵DB⊥面ABC,
又∵面ABDE⊥面ABC,面ABDE∩面ABC=AB,DB?面ABDE,
∴DB⊥面ABC,
∵BD∥AE,
∴EA⊥面ABC,(5分)
如圖,以C為原點(diǎn),分別以CA、CB為x、y軸,以過點(diǎn)C且與平面ABC垂直的直線為z軸,建立空間直角坐標(biāo)系
∵AC=BC=4
∴各點(diǎn)坐標(biāo)為:C(0,0,0),A(4,0,0),B(0,4,0),D(0,4,2)
E(4,0,4)
∴
(6分)
設(shè)面ODM的法向量
,則由
可得
令x=2,
得:
(7分)
設(shè)直線CD和平面ODM所成角為θ.
則:
∴直線CD和平面ODM所成角正弦值為
(8分)
(III)方法一:當(dāng)N是EM中點(diǎn)時(shí),ON⊥平面ABDE.(9分)
證明:取EM中點(diǎn)N,連接ON、CM,∵AC=BC,M為AB中點(diǎn),∴CM⊥AB,
又∵面ABDE⊥面ABC,面ABDE∩面ABC=AB,CM?面ABC,
∴CM⊥AB,
∵N是EM中點(diǎn),O為CE中點(diǎn),∴ON∥CM,
∴ON⊥平面ABDE.(13分)
方法二當(dāng)N是EM中點(diǎn)時(shí),ON⊥平面ABDE.(9分)
∵DB⊥BA,又∵面ABDE⊥面ABC,面ABDE∩面ABC=AB,DB?面ABDE
∴DB⊥面ABC,
∵BD∥AE,
∴EA⊥面ABC.
如圖,以C為原點(diǎn),分別以CA、CB為x、y軸,以過點(diǎn)C與平面垂直的直線為z軸,建立空間直角坐標(biāo)系,
∵AC=BC=4,
∴各點(diǎn)坐標(biāo)為:C(0,0,0),A(4,0,0),B(0,4,0)D(0,4,2),E(4,0,4)
∴O(2,0,2),M(2,2,0),設(shè)N(a,b,c),
∴
,
(10分)
∵點(diǎn)N在ME上,∴
,即(a-2,b-2,c)=λ(4-a,-b,4-c)
∴
∴
(11分)
∵
是面ABC的一個法向量,
∴
,∴
,解得λ=1.(12分)
∴
即N是線段EM的中點(diǎn),
∴當(dāng)N是EM中點(diǎn)時(shí),ON⊥平面ABDE.(13分)
點(diǎn)評:本題主要考查空間線面的位置關(guān)系,空間角的計(jì)算等基本知識,考查空間想象能力、邏輯思維能力、運(yùn)算求解能力和探究能力,同時(shí)考查學(xué)生靈活利用圖形,借助向量工具解決問題的能力,考查數(shù)形結(jié)合思想.