在直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:①;②;③

(1)求的頂點(diǎn)的軌跡方程;

(2)過點(diǎn)的直線與(1)中的軌跡交于兩點(diǎn),求的取值范圍。

解:(1)設(shè)

因?yàn)?sub>,所以點(diǎn)在線段的中垂線上,

由已知,,所以

又因?yàn)?sub>,所以                 

     

              

故頂點(diǎn)的軌跡方程為         

(2)設(shè)直線的方程為:,

消去,   ①

,             

,

=

由方程①知

,     

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年臺(tái)州市模擬理)  在直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:

;②;③

(1)求的頂點(diǎn)的軌跡方程;

(2)過點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:①;②;③

   (1)求的頂點(diǎn)的軌跡方程;

   (2)過點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)分別的坐標(biāo)為,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:

;②;③

(1)求的頂點(diǎn)的軌跡方程;

(2)過點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:

;②;③

(1)求的頂點(diǎn)的軌跡方程;

(2)過點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)在直角坐標(biāo)平面中,△的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:①=0;②;③(1)求△的頂點(diǎn)的軌跡方程;(2)過點(diǎn)直線與(1)中軌跡交于不同的兩點(diǎn),求△面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案