分析:將原函數(shù)
f(x)=-log2x+2logx+8是函數(shù):y=-μ
2+2μ+8,μ=
logx的復(fù)合函數(shù),利用對(duì)數(shù)函數(shù)與二次函數(shù)的單調(diào)性來研究即可.注意對(duì)數(shù)的真數(shù)必須大于0.
解答:解:設(shè)μ=
logx,x>0.
則原函數(shù)
f(x)=-log2x+2logx+8是函數(shù)y=-μ
2+2μ+8,μ=
logx的復(fù)合函數(shù),
因μ=
logx在(0,+∞)上是減函數(shù),
∵函數(shù)y=-μ
2+2μ+8的單調(diào)增區(qū)間(-∞,1],單調(diào)減區(qū)間[1,+∞),
∴根據(jù)復(fù)合函數(shù)的單調(diào)性,得
①函數(shù)
f(x)=-log2x+2logx+8的單調(diào)減區(qū)間是函數(shù)y=-μ
2+2μ+8的單調(diào)增區(qū)間,
由μ≤1得:
logx≤1,⇒x≥
;
②函數(shù)
f(x)=-log2x+2logx+8的單調(diào)增區(qū)間是函數(shù)y=-μ
2+2μ+8的單調(diào)減區(qū)間,
由μ≥1得:
logx≥1,⇒0≤x≤
;
故函數(shù)
f(x)=-log2x+2logx+8的單調(diào)區(qū)間是:[
,+∝),(0,
].
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的單調(diào)性,指數(shù)函數(shù)的單調(diào)性,二次函數(shù)的單調(diào)性,是基礎(chǔ)題. 復(fù)合函數(shù)的單調(diào)性一般是看函數(shù)包含的兩個(gè)函數(shù)的單調(diào)性(1)如果兩個(gè)都是增的,那么函數(shù)就是增函數(shù)(2)一個(gè)是減一個(gè)是增,那就是減函數(shù)(3)兩個(gè)都是減,那就是增函數(shù).