已知{an}是遞增數(shù)列,且對任意n∈N*都有ann2λn恒成立,則實數(shù)λ的取值范圍是(   ).

A.            B.(0,+∞)      C.(-2,+∞)        D.(-3,+∞)

 

【答案】

D

【解析】由an+1>an知2n+1+λ>0,∴λ>-2n-1(n∈N*),∴λ>-3. 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項和Sn=
n2
•a
;
(3)已知有窮等差數(shù)列{cn}的項數(shù)是n0(n0≥3),所有項之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n0和B表示它的“兌換系數(shù)”;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列bn的項數(shù)是n0(n0≥3),所有項之和是B,求證:數(shù)列bn是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市龍泉中學(xué)2010屆高三第五次調(diào)研考試數(shù)學(xué)文科試題 題型:022

有以下幾個命題

①一個容量為n的樣本,分成若干組,已知某組的頻數(shù)和頻率分別為40和0.125,則n的值為320;

②設(shè)A、B為兩個定點,m(m>0)為常數(shù),,則動點P的軌跡為橢圓;

③若數(shù)列{an}是遞增數(shù)列,且an=n2+λn+1(n≥2,n∈N*),則實數(shù)λ的取值范圍是(-5,+∞);

④若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,則點F2關(guān)于∠F1PF2的外角平分線對稱的點M的軌跡是圓.

其中真命題的序號為________;(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省廈門市思明區(qū)科技中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項和;
(3)已知有窮等差數(shù)列{cn}的項數(shù)是n(n≥3),所有項之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n和B表示它的“兌換系數(shù)”;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省廈門市思明區(qū)科技中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果存在常數(shù)a使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:1,2,4,m(m>4)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)若有窮遞增數(shù)列{bn}是“兌換系數(shù)”為a的“兌換數(shù)列”,求證:數(shù)列{bn}的前n項和
(3)已知有窮等差數(shù)列{cn}的項數(shù)是n(n≥3),所有項之和是B,試判斷數(shù)列{cn}是否是“兌換數(shù)列”?如果是的,給予證明,并用n和B表示它的“兌換系數(shù)”;如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案