如圖所示,雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),雙曲線的左支上有一點(diǎn)P,∠F1PF2=,且△PF1F2的面積為2,又雙曲線的離心率為2,求該雙曲線的方程.
解:設(shè)雙曲線方程為:=1(a>0,b>0),
F1(﹣c,0),F(xiàn)2(c,0),P(x0,y0).
在△PF1F2中,由余弦定理,得:
|F1F2|2=|PF1|2+|PF2|2﹣2|PF1||PF2|cos=(|PF1|﹣|PF2|)2+|PF1||PF2|.
即4c2=4a2+|PF1||PF2|.
又∵=2
|PF1||PF2|sin=2
∴|PF1||PF2|=8.
∴4c2=4a2+8,即b2=2.
又∵e==2,
∴a2=
∴雙曲線的方程為:=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•紅橋區(qū)一模)如圖所示,雙曲線
x2
16
-
y2
20
=1
上一點(diǎn)P到右焦點(diǎn)F2的距離是實(shí)軸兩端點(diǎn)A1,A2到右焦點(diǎn)F2距離的等差中項(xiàng),則P點(diǎn)到左焦點(diǎn)F1的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•宣武區(qū)一模)在面積為9的△ABC中,tan∠BAC=-
4
3
,且
CD
=2
DB
.現(xiàn)建立以A點(diǎn)為坐標(biāo)原點(diǎn),以∠BAC的平分線所在直線為x軸的平面直角坐標(biāo)系,如圖所示.
(1)求AB、AC所在的直線方程;
(2)求以AB、AC所在的直線為漸近線且過點(diǎn)D的雙曲線的方程;
(3)過D分別作AB、AC所在直線的垂線DF、DE(E、F為垂足),求
DE
DF
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知定圓O1、O2的半徑分別為r1、r2,圓心距|O1O2|=2,動圓C與圓O1、O2都相切,圓心C的軌跡為如圖所示的兩條雙曲線,兩條雙曲線的離心率分別為e1、e2,則
e1+e2
e1e2
的值為( 。
A、r1+r2
B、r1和r2中的較大者
C、r1和r2中的較小者
D、|r1-r2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省丹陽高級中學(xué)高三模擬試題一、數(shù)學(xué) 題型:013

如圖所示,在△ABC中,∠CAB=∠CBA=30°,AC、BC上的高分別為BD、AE,則以A、B為焦點(diǎn),且過D、E的橢圓與雙曲線的離心率的倒數(shù)和為

[  ]

A.

B.1

C.

D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年鄞州中學(xué)模擬理)(15分) 在面積為9的中,,且,F(xiàn)建立以A點(diǎn)為坐標(biāo)原點(diǎn),以的平分線所在直線為x軸的平面直角坐標(biāo)系,如圖所示。

(1)   求AB、AC所在的直線方程;

(2)   求以AB、AC所在的直線為漸近線且過點(diǎn)D的雙曲線的方程;

(3)過D分別作AB、AC所在直線的垂線DF、DE(E、F為垂足),求的值。

 

 

查看答案和解析>>

同步練習(xí)冊答案