分析:(1)利用f′(0)=0,解得m,再驗(yàn)證即可;
(2))
f′(x)=.△=4(m-1)(3-m).分以下幾種情況討論:
①若m=2時,②若
時,當(dāng)m≤1時,③若1<m<2時,
(3)由(2)知,m=1時,f(x)在R上單調(diào)遞減.當(dāng)x∈(0,+∞),由f(x)<f(0)=0.可得ln(1+x
2)<x,對x取值,再利用等比數(shù)列的前n項和公式即可得出.
解答:解:(1)f′(x)=
+m-2,
∵x=0是f(x)的一個極值點(diǎn),∴f′(0)=0,解得m=2,
驗(yàn)證知m=2符合條件.
(2)∵
f′(x)=.△=4(m-1)(3-m).
①若m=2時,
f′(x)=.
∴f(x)在(0,+∞)上單調(diào)遞增,在(-∞,0)單調(diào)遞減;
②若
時,
當(dāng)m≤1時,f′(x)≤0,
∴f(x)在R上單調(diào)遞減.
③若1<m<2時,f′(x)=0有兩根,
x1=,
x2=.
∴f(x)在(x
1,x
2)上單調(diào)減;在(-∞,x
1)和(x
2,+∞)上單調(diào)增.
綜上所述,若m≤1時,f(x)在R上單調(diào)遞減;
若m=2時,f(x)在(0,+∞)上單調(diào)遞增,在(-∞,0)單調(diào)遞減;
若1<m<2時,f(x)在(x
1,x
2)上單調(diào)減;在(-∞,x
1)和(x
2,+∞)上單調(diào)增.
(3)由(2)知,m=1時,∴f(x)在R上單調(diào)遞減.
當(dāng)x∈(0,+∞),由f(x)<f(0)=0.
∴l(xiāng)n(1+x
2)<x,
∴S
n=
ln(1+)+ln(1+)+…+
ln(1+)<++…+=
=
(1-)<.
點(diǎn)評:熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值、分類討論的思想方法、等比數(shù)列的前n項和公式等是解題的關(guān)鍵.