13.在小于100的正整數(shù)中共有多少個(gè)數(shù)被7除余2,這些數(shù)的和是多少?

分析 根據(jù)已知條件,這些數(shù)構(gòu)成了以首項(xiàng)為2,末項(xiàng)為93,公差為7的等差數(shù)列,求得通項(xiàng)公式,當(dāng)an=93,求得n=14,根據(jù)等差數(shù)列前n項(xiàng)和公式即可求得這些數(shù)的和.

解答 解:由題意可知:這些數(shù)構(gòu)成了以首項(xiàng)為2,末項(xiàng)為93,公差為7的等差數(shù)列{an},
由an=2+7(n-1)=7n-5,
當(dāng)an=93,n=14,
∴這些數(shù)的和Sn=$\frac{14(2+93)}{2}=665$.

點(diǎn)評(píng) 本題考查等差數(shù)列的應(yīng)用,考查等差數(shù)列通項(xiàng)公式及前n項(xiàng)和公式,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.回文數(shù)是指從左到右讀與從右到左讀都一樣的正整數(shù),如22,121,3443,94249等.顯然2位回文數(shù)有9個(gè):11,22,33,…,99.3位回文數(shù)有90個(gè):101,111,121,…,191,202,…,999.則2n+1(n∈N *)位回文數(shù)的個(gè)數(shù)為( 。
A.9×10 n-1個(gè)B.9×10 n個(gè)C.9×10 n+1個(gè)D.9×10 n+2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.圓柱的底面半徑為r,其全面積是側(cè)面積的$\frac{3}{2}$倍.O是圓柱中軸線的中點(diǎn),若在圓柱內(nèi)任取一點(diǎn)P,則使|PO|≤r的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線y2=2px(p>0)的焦點(diǎn)是雙曲線$\frac{x^2}{5+p}$-$\frac{y^2}{7+p}$=1的一個(gè)焦點(diǎn),則p的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)(0.008)${\;}^{\frac{1}{3}}}$+($\sqrt{2}$-π)0-(${\frac{125}{64}}$)${\;}^{-\frac{1}{3}}}$;
(2)$\frac{{({{log}_3}2+{{log}_9}2)•({{log}_4}3+{{log}_8}3)}}{{lg600-\frac{1}{2}lg0.036-\frac{1}{2}lg0.1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\frac{{m+{e^{2x+1}}}}{2x+1}$在x=0處的切線與直線x-2y=0垂直,則m=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知|$\vec a$|=1,|$\vec b$|=$\sqrt{2}$,且($\vec a$-$\vec b$)與$\vec a$垂直,則$\vec a$與$\vec b$的夾角是( 。
A.60°B.30°C.135°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.下列語句的否定形式是什么?
①a>0;②a=0且b=2;③我們都是中國(guó)人;④我們都不是中國(guó)人;⑤我們至多一個(gè)是中國(guó)人;⑥我們至少5個(gè)是中國(guó)人;⑦我們班任意一個(gè)是中國(guó)人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知直線l:y=$\sqrt{3}$x+4,圓O:x2+y2=3,直線m∥l.
(1)若直線m與圓O相交,求直線m縱截距b的取值范圍;
(2)設(shè)直線m與圓O相交于C、D兩點(diǎn),且A、B為直線l上兩點(diǎn),如圖所示,若四邊形ABCD是一個(gè)內(nèi)角為60°的菱形,求直線m縱截距b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案