(I)因為a
n=
an-1+(n≥2,n∈N
*),
所以
an-an-1=n,設
dn=an,
則d
n-d
n-1=n(n≥2,n∈N
*),d
1=1,
由累加法可得:
dn=,故
an=n2∵
Sn=(bn-1) ①,∴
Sn+1=(bn+1-1) ②
②-①得
Sn+1-Sn=(bn+1-bn)=b
n+1,∴b
n+1=-2b
n把n=1代入①式可得b
1=-2,
∴
bn=(-2)n(II)由(I)可知
cn=an=
n2=n
①b
nc
n=n•(-2)
n∴
Tn=1•(-2)+2•(-2)2+3•(-2)3+…+n•(-2)
n-2
Tn=1•(-2)2+2•(-2)3+3•(-2)4+…+n•(-2)
n+1兩式相減得:
3Tn=1•(-2)+(-2)2+(-3)3+…+(-2)
n-n•(-2)
n+1=
-n•(-2)n+1=
-[1-(-2)n]-n•(-2)n+1故所求數列的前n項和為:
Tn=--(-2)n+1②∵sin1=sin[(n+1)-n]=sin(n+1)cosn-cos(n+1)sinn
∴
=
=
sin(n+1)cosn-cos(n+1)sinn |
sin1cosncos(n+1) |
=
[tan(n+1)-tann]故所求數列的前n項和為:
A
n=
[(tan2-tan1)+(tan3-tan2)+…+(tan(n+1)-tann)]
=
[tan(n+1)-tann]