已知圓的極坐標方程為:.
(1)將極坐標方程化為普通方程;
(2)若點在該圓上,求的最大值和最小值.

(1),(2)6,2.

解析試題分析:(1)先將用兩角差的余弦公式展開,然后將,代入圓的極坐標方程即可化為直角坐標方程;(2)用圓的參數(shù)方程將圓上點表示出來,將x+y化為三角函數(shù),利用輔助角公式化為一個角的三角函數(shù),即可求出最值.
試題解析:(1);                   4分
(2)圓的參數(shù)方程為               6分
所以,那么x+y最大值為6,最小值為2.          10分
考點:極坐標方程與直角坐標方程的互化,圓的參數(shù)方程,輔助角公式,轉(zhuǎn)化思想

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線L的參數(shù)方程為 (t為參數(shù))
(1)寫出直線L的普通方程與Q曲線C的直角坐標方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線C,設(shè) M(x,y)為C上任意一點,求的最小值,并求相應的點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知極坐標系的原點在直角坐標系的原點處,極軸為軸正半軸,直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.
(1)寫出的直角坐標方程,并說明是什么曲線?
(2)設(shè)直線與曲線相交于、兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為(1,-5),點M的極坐標為(4,).若直線l過點P,且傾斜角為,圓C以M為圓心, 4為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.求:
(1)求圓的直角坐標方程;
(2)若是直線與圓面的公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的直角坐標方程為. 以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. P是曲線上一點,,,將點P繞點O逆時針旋轉(zhuǎn)角后得到點Q,,點M的軌跡是曲線.
(1)求曲線的極坐標方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在極坐標系中,已知圓C經(jīng)過點P,圓心為直線ρsin=-與極軸的交點,求圓C的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

(坐標系與參數(shù)方程選講選做題) 在極坐標系中,若過點且與極軸垂直的直線交曲線、兩點,則     .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在極坐標系中,若過點的直線與曲線有公共點,則直線的斜率的取值范圍為             

查看答案和解析>>

同步練習冊答案