函數(shù)(a>0,且a¹ 1)在[-1,1]上有最大值14,求a的值.

答案:略
解析:

解:,令,

當(dāng)a1時(shí),∵-1x1,∴,即.∴當(dāng)t=a時(shí),有最大值.

,∴a=3

當(dāng)0a1時(shí),同理求得


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax(a>0,且a≠1)在區(qū)間[1,2]上的最大值與最小值的差是
1
4
,則實(shí)數(shù)a的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(a-kax)(a>0,且a≠1,k∈R).
(1)若f(x)的圖象關(guān)于直線y=x對(duì)稱,且f(2)=-2loga2,求a的值.
(2)當(dāng)0<a<1時(shí),若f(x)在[1,+∞)內(nèi)恒有意義,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=loga(a-kax)(a>0,且a≠1,k∈R).
(1)若f(x)的圖象關(guān)于直線y=x對(duì)稱,且f(2)=-2loga2,求a的值.
(2)當(dāng)0<a<1時(shí),若f(x)在[1,+∞)內(nèi)恒有意義,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:專項(xiàng)題 題型:解答題

已知函數(shù)f(x)=+x+(a-1)lnx+15a,其中a<0,且a≠-1,
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)g(x)=(e是自然對(duì)數(shù)的底數(shù)),是否存在a,使g(x)在[a,-a]上為減函數(shù)?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年浙江省杭州師大附中高三第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=loga(a-kax)(a>0,且a≠1,k∈R).
(1)若f(x)的圖象關(guān)于直線y=x對(duì)稱,且f(2)=-2loga2,求a的值.
(2)當(dāng)0<a<1時(shí),若f(x)在[1,+∞)內(nèi)恒有意義,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案