如果函數(shù)f(x)=x2+bx+c對任意實數(shù)t都有f(2+t)=f(2-t),比較f(1),f(2),f(4)的大小.

解析:∵f(2+t)=f(2-t),

    ∴f(x)的對稱軸為x=2.

    故f(x)在[2,+∞)上是增函數(shù),且f(1)=f(3).

    ∴f(2)<f(3)<f(4),

    即f(2)<f(1)<f(4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、有六個命題:
①如果函數(shù)y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關(guān)于x=a對稱;②如果函數(shù)f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于x=0對稱;③如果函數(shù)y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關(guān)于x=a對稱;④函數(shù)y=f(x)與
f(2a-x)的圖象關(guān)于x=a對稱;⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=a對稱;⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=0對稱.則正確的命題是
①③④⑥
(請將你認(rèn)為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

下列說法正確的是

[  ]

A.對于函數(shù)f(x),如果存在一個常數(shù)T,使得定義域內(nèi)的每一個x值都滿足f(x+T)=f(x),則函數(shù)f(x)叫做周期函數(shù)

B.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域內(nèi)存在一個x滿足于f(x+T)=f(x),則f(x)叫做周期函數(shù)

C.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域內(nèi)存在若干個x滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

D.對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得定義域的每一個x值滿足f(x+T)=f(x),則f(x)叫做周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

有六個命題:
①如果函數(shù)y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關(guān)于x=a對稱;②如果函數(shù)f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于x=0對稱;③如果函數(shù)y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關(guān)于x=a對稱;④函數(shù)y=f(x)與
f(2a-x)的圖象關(guān)于x=a對稱;⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=a對稱;⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=0對稱.則正確的命題是________(請將你認(rèn)為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有六個命題:
①如果函數(shù)y=f(x)滿足f(a+x)=f(a-x),則y=f(x)圖象關(guān)于x=a對稱;②如果函數(shù)f(x)滿足f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于x=0對稱;③如果函數(shù)y=f(x)滿足f(2a-x)=f(x),則y=f(x)的圖象關(guān)于x=a對稱;④函數(shù)y=f(x)與
f(2a-x)的圖象關(guān)于x=a對稱;⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=a對稱;⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=0對稱.則正確的命題是______(請將你認(rèn)為正確的命題前的序號全部填入題后橫線上,少填、填錯均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),如果函數(shù)f(x)的圖象恰好通過n(n∈N*)個整點(diǎn),則稱函數(shù)f(x)為n階整點(diǎn)函數(shù).有下列函數(shù):

①f(x)=sin2x;②g(x)=x3;③h(x)=()x;④φ(x)=lnx.

其中是一階整點(diǎn)函數(shù)的是

A.①②③④            B.①③④            C.①④            D.④

查看答案和解析>>

同步練習(xí)冊答案