函數(shù)
(Ⅰ)判斷并證明函數(shù)的奇偶性;
(Ⅱ)若,證明函數(shù)上單調(diào)遞增;
(Ⅲ)在滿足(Ⅱ)的條件下,解不等式.
(1)函數(shù)為奇函數(shù).(2)  

試題分析:解:(Ⅰ)該函數(shù)為奇函數(shù)                                       1分
證明:函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011638290737.png" style="vertical-align:middle;" />關(guān)于原點(diǎn)對稱                2分
對于任意 所以函數(shù)為奇函數(shù).   4分
(Ⅱ) 設(shè)任意
        6分
,即
  ∴ 函數(shù)在上單調(diào)遞增. 8分
(Ⅲ)∵為奇函數(shù)
  10分
    函數(shù)上單調(diào)遞增
 ∴   即           12分
點(diǎn)評:主要是考查了函數(shù)單調(diào)性以及函數(shù)奇偶性的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012211616401.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(Ⅰ)求實(shí)數(shù)的值;    (Ⅱ)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是定義在上的奇函數(shù)且是減函數(shù),若,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一邊長為的正方形鐵片,鐵片的四角截去四個邊長均為的小正方形,然后做成一個無蓋方盒。
(1)試把方盒的容積表示為的函數(shù);(2)多大時,方盒的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知非零向量,滿足,則函數(shù)是 (   )
A.偶函數(shù)B.奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時,f(x)=2x(1-x),則f(-)=       (   )
A.-     B.-        C  .  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙.已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響.
據(jù)調(diào)查統(tǒng)計(jì),通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表:
所用的時間(天數(shù))
10
11
12
13
通過公路1的頻數(shù)
20
40
20
20
通過公路2的頻數(shù)
10
40
40
10
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā).
(Ⅰ)為了盡最大可能在各自允許的時間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(Ⅱ)若通過公路1、公路2的“一次性費(fèi)用”分別為萬元、萬元(其它費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān).如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,銷售商將少支付給生產(chǎn)商2萬元.如果汽車A、B長期按(Ⅰ)所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大.(注:毛利潤=(銷售商支付給生產(chǎn)商的費(fèi)用)一(一次性費(fèi)用)) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是定義在上的函數(shù),當(dāng),且時,有
(1)證明是奇函數(shù);
(2)當(dāng)時,(a為實(shí)數(shù)). 則當(dāng)時,求的解析式;
(3)在(2)的條件下,當(dāng)時,試判斷上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若定義在上的函數(shù)滿足,其中,且,則            

查看答案和解析>>

同步練習(xí)冊答案