已知(
12
,0)
是函數(shù)f(x)=(asinx+cosx)cosx-
1
2
圖象的一個(gè)對(duì)稱(chēng)點(diǎn).
(Ⅰ)求a的值;
(Ⅱ)作出函數(shù)f(x)在x∈[0,π]上的圖象簡(jiǎn)圖.
分析:(Ⅰ)利用二倍角公式化簡(jiǎn),通過(guò)對(duì)稱(chēng)點(diǎn),直接求出a的值.
(Ⅱ)借助(Ⅰ)化簡(jiǎn)函數(shù)的表達(dá)式,然后分別令
x
2
+
π
6
π
6
π
2
,π,
2
13π
6
,并求出對(duì)應(yīng)的(x,f(x))點(diǎn),描點(diǎn)后即可得到函數(shù)在x∈[0,π]的圖象.
解答:解:(Ⅰ)f(x)=(asinx+cosx)cosx-
1
2

=asinxcosx+cos2x-
1
2

=
a
2
sin2x+
1
2
cos2x
,
因?yàn)?span id="r7pppxd" class="MathJye">(
12
,0)是函數(shù)f(x)=(asinx+cosx)cosx-
1
2
圖象的一個(gè)對(duì)稱(chēng)點(diǎn),
所以
a
2
sin(2×
12
)+
1
2
cos(2×
12
)=0

a
2
×
1
2
-
1
2
×
3
2
=0
,解得,a=
3

(Ⅱ)函數(shù)f(x)=
3
2
sin2x+
1
2
cos2x
=sin(2x+
π
6
).
列表:
x 0
π
6
12
3
π
2x+
π
6
π
6
π
2
π
2
13π
6
y=sin(2x+
π
6
1
2
1 0 -1
1
2
畫(huà)簡(jiǎn)圖
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,函數(shù)解析式的求法,其中正弦型函數(shù)的圖象的畫(huà)法,性質(zhì)是三角函數(shù)的重點(diǎn)內(nèi)容之一,一定注意掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(λ+1,0,2λ)
,
b
=(6,2μ-1,2)
,若
a
b
,則λ與μ的值分別為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)O(0,0),A(3,4),B(5,12).
(1)求
AB
的坐標(biāo)及|
AB
|
;  
(2)求
OA
OB
;
(3)求
OA
OB
上投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|0<ax+1≤5},集合B={x|-
1
2
<x≤2}.若A=B,則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|0<ax+1≤5},B={x|-
12
<x≤2}
,若A∪B=A,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案