已知函數(shù)f(x)=x2-2|x|.
(Ⅰ)判斷并證明函數(shù)的奇偶性;
(Ⅱ)判斷函數(shù)f(x)在(-1,0)上的單調(diào)性并加以證明.
(Ⅰ)解:是偶函數(shù).
證明:函數(shù)的定義域是R,
∵f(-x)=(-x)
2-2|-x|=x
2-2|x|=f(x)
∴函數(shù)f(x)是偶函數(shù).
(Ⅱ)解:是單調(diào)遞增函數(shù).
證明:當(dāng)x∈(-1,0)時(shí),f(x)=x
2+2x
設(shè)-1<x
1<x
2<0,則x
1-x
2<0,且x
1+x
2>-2,即x
1+x
2+2>0
∵
=(x
1-x
2)(x
1+x
2+2)<0
∴f(x
1)<f(x
2)
所以函數(shù)f(x)在(-1,0)上是單調(diào)遞增函數(shù).
分析:(Ⅰ)先求函數(shù)的定義域是R,再利用偶函數(shù)的定義,可以證明函數(shù)f(x)是偶函數(shù).
(Ⅱ)利用單調(diào)性的證題步驟:取值,作差,變形,定號(hào),下結(jié)論即可證明函數(shù)f(x)在(-1,0)上是單調(diào)遞增函數(shù).
點(diǎn)評:本題以函數(shù)為載體,考查函數(shù)的奇偶性,考查函數(shù)的單調(diào)性,熟練掌握定義是關(guān)鍵.